PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical method of computing impedances of a three-phase busbar system of rectangular cross section

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Numeryczna metoda obliczania impedancji trójfazowego układu szynoprzewodów prostokątnych
Języki publikacji
EN
Abstrakty
EN
In this paper, a new numerical method of calculating rectangular busbar system impedances is proposed. This method is based on the partial inductance theory. In particular, the impedances of a three-phase system of rectangular busbars with the neutral busbar, and the use of the method are described. Results for resistance and reactance for this systems of multiple rectangular conductor have been obtained, and the skin and proximity effects have also been taken into consideration. Finally, two applications of a three-phase system are described.
PL
W artykule przedstawiono nową numeryczna metodę obliczania impedancji układów szyn prostokątnych. Metoda ta oparta jest na teorii indukcyjności cząstkowych. W szczególności opisano impedancje szynoprzewodów prostokątnych w układzie trójfazowym z przewodem neutralnym. Wyznaczono rezystancje i reaktancje takiego wieloprzewodowego układu szynoprzewodów prostokątnych z uwzględnieniem zjawiska naskórkowości i zbliżenia. Wyznaczono impedancje dla dwóch przykładów układów trójfazowych z szynoprzewodami prostokątnymi.
Rocznik
Strony
150--154
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology
autor
  • The Silesian University of Technology
  • Czestochowa University of Technology
autor
  • Czestochowa University of Technology
autor
  • The Silesian University of Technology
Bibliografia
  • [1] ABB: Generator Bus duct : Power technology systems. ABB AG, 2009, available at: http://www.abb.com
  • [2] Ducluzaux A.: Extra losses caused in high current conductors by skin and proximity effects. Schneider Electric "Cahier Technique" no. 83, 1983.
  • [3] Auber R.: Jeux de barres à basse tension. Technique de l’ingénieur, traité Génie électrique, No. D 5 165, 1998.
  • [4] Copper Development Association: Copper for Busbars. 2001, available at: http://www.cda.org.uk/Megab2/elecapps/pub22/index.htm
  • [5] Sarajčev P. and Goič R.: Power Loss Computation in High-Current Generator Bus Ducts of Rectangular Cross- Section. Electris Power Components and Systems, No. 39, 2010, pp. 1469-1485.
  • [6] Chiampi M., Chiarabaglio D. and Tartaglia M.: A General Approach for Analyzing Power Busbar under A.C. Conditions. IEEE trans. on Magn., Vol. 20, No. 6, 1993, pp. 2473-2475.
  • [7] Sigg H.J. and Strut t M.J .O.: Skin Effect and Proximity effect in Polyphase Systems of Rectangular Conductors Calculated on an RC Network. IEEE trans. on Power Apparatus and Systems, Vol. PAS-89, No. 3, 1970, pp. 470-477.
  • [8] Guo J., Glisson A.W. and Kajfez D.: Analysis of Resistance and Internal Reactance in Systems of Parallel Conductors. Int.J. Electron. Commun. AEÜ 52, No. 2, 1998, pp. 57-64.
  • [9] Piątek Z.: Impedances of Tubular High Current Busducts. Polish Academy of Sciences. Warsaw 2008.
  • [10] Piatek Z.: Self and Mutual Impedances of a Finite Length Gas Insulated Transmission Line (GIL). Elec. Pow. Syst. Res., No. 77, 2007, pp. 191-203.
  • [11] Fazljoo S.A. and Besmi M.R.: A New Method for Calculation of Impedance in Various Frequencies. 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), 17-18 Feb. 2010, pp. 36-40.
  • [12] Ametani A.: Approximate Method for Calculating the impedance of Multiconductors with Cross Section of Arbitrary Shapes. Electrical Engineering in Japan, Vol. 111, No. 2, 1992, pp. 117-123.
  • [13] Kazimierczuk M. K.: High-Frequency Magnetic Components. J Wiley & Sons, Chichester, 2009.
  • [14] Paul C. R.: Inductance: Loop and Partial. J Wiley & Sons, New Jersey, 2010.
  • [15] Paul C.R.: Analysis of Multiconductor Transmission Lines. J Wiley & Sons, New Jersey, 2010.
  • [16] Silvester P.: AC resistance and Reactance of Isolated Rectangular Conductors. IEEE Trans. on Power Apparatus and Systems, vol. PAS-86, No. 6, June 1967, pp. 770-774.
  • [17] Goddard K.F., Roy A.A. and Sykuls ki J .K.: Inductance and resistance calculations for isolated conductor. IEE Pro.-Sci. Meas. Technol., Vol. 152, No. 1, January 2005, pp. 7-14.
  • [18] Goddard K.F., Roy A.A. and Sykulski J .K.: Inductance and resistance calculations for a pair of rectangular conductor. IEE Pro.-Sci. Meas. Technol., Vol. 152, No. 1, January 2005, pp. 73-78.
  • [19] Chen H. and Fang J.: Modeling of Impedance of Rectangular Cross-Section Conductors. IEEE Conference on Electrical Performance of Electronic Packaging, 2000, pp. 159- 162.
  • [20] Zhihua Z. and Weiming M.: AC Impedance of an Isolated Flat Conductor. IEEE Trans. on Electromagnetic Compatibility, Vol. 44, No. 3, 2002, pp. 482-486.
  • [21] Piątek Z. and Baron B.: Exact closed form formula for self inductance of conductor of rectangular cross section. Progress in Electromagnetics Research M. Vol. 26, 2012, pp. 225-236.
  • [22] Piątek Z. et al.: Exact closed form formula for mutual inductance of conductors of rectangular cross section. Przegląd Elektrotechniczny (Electrical Review), 2013 (to be published).
  • [23] Piątek Z. et al.: Self inductance of long conductor of rectangular cross section. Przegląd Elektrotechniczny (Electrical Review), R. 88, No. 8, 2012, pp. 323-326.
  • [24] Piątek Z. et al.: Mutual inductance of long rectangular conductors. Przegląd Elektrotechniczny (Electrical Review), R. 88, No. 9a, 2012, pp. 175-177.
  • [25] Broydé, F., Clavelier E. and Broydé L.: A direct current per-unit-length inductance matrix computation using modified partial inductance. Proc. Of the CEM 2012 Int. Symp. on Electromagnetic Compatibility, Rouen, 25-27 April, 2012.
  • [26] Hoer C. and Love C.: Exact Inductance Equations for Rectangular Conductors with Application to More Complicated Geometries. J. Res. N. B. S., No. 2, 1965, pp. 127-137.
  • [27] Zhong G. and Koh C-K.: Exact Form Formula for Mutual Inductance of On-Chip Interconnects. IEEE Trans. Circ. and Sys., I:FTA, No. 10, 2003, pp. 1349-1353.
  • [28] Antonioni G. et al: Internal Impedance of Conductors of Rectangular Cross Section. IEE Trans. on Microway and Technique, vol. 47, No. 7, July 1999, pp. 979-985.
  • [29] Canova A. and Giaccone L.: Numerical and Analytical Modeling of Busbar Systems. IEEE Trans. on Power Delivery, vol. 24, No. 3, July 2009, pp. 1568- 1577.
  • [30] Weeks W.T. et al: Resistive and Inductive Skin Effect in Rectangular Conductors. IBM J. Res. Develop., vol. 23, No. 6, November 1979, pp. 652-660.
  • [31] Barr A.W.: Calculation of Frequency Dependent Impedance for Conductor of Rectangular Cross Section. AMP J. of Technology, vol. 1, November 1991, pp. 91-100.
  • [32] Baron B. et al: Impedance of an isolated rectangular conductor. Przegląd Elektrotechniczny (Electrical Review), 2013 (to be published).
  • [33] Guichon J.M., Clavel E. and Roudet J.: Modélisation de jeux de barres basse tension en vue de la conception. RS – RIGE, Vol. 6, No. 5-6, 2003, pp.731-769.
  • [34] Comellini E., Invernizzi A. and Manzoni G.: A Computer Program for Determining Electrical Resistance and Reactance of any Transmission Line. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-92, 1973, pp. 308-314.
  • [35] Tsuboi K., Tsuji M. and Yamada E.: A Simplified Method of Calculating Busbar Inductance and its Application for Stray Resonance Analysis in an Inverter DC Link. Electrical Engineering in Japan, Vol. 126, No. 3, 1999, pp. 49-63.
  • [36] Angi H., Weiming M. and Zhihua Z.: New Numerical Methods of Computing Internal Inductance of Conductor of Rectangular Cross-Section. Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 2008, pp. 674- 677.
  • [37] Battauscio O., Chiampi M. and Chiarabaglio D.: Experimental Validation of a Numerical Model of Busbar Systems. IEE Proceedings - Generation, Transmission and Distribution, 1995, pp. 65-72.
  • [38] Birtwiste D. and Pearl P.: Measurement of Impedance, Power Loss and Current Distribution in Three-Phase Busbars. J. of Electrical and Electronics Engineering, Australia – IE Aust. & IREE Aust., Vol. 8, No. 1, 1988, pp. 37-46.
  • [39] Du J., Burnett J. and Fu Z.C.: Experimental and Numerical Evaluation of Busbar Trunking Impedance. Electric Power Systems Research, No. 55, 2000, pp. 113-119.
  • [40] Deeley E. M. and Okon E. E.: An Integral Method for Computing the Inductance and A.C. Resistance of parallel conductors. International Journal for Numerical Methods in Engineering, Vol. 12, 625—634, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-944eec51-a4c2-455c-8900-a8cb1bd77505
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.