PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation conditions and diagenetic evolution of Sand Roses in clastic sabkhas along the Arabian Gulf Coastal Region, Eastern Saudi Arabia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This field, petrographic and geochemical study aims at constraining the formation and diagenetic evolution of sand roses (desert roses) in interdune sabkhas in Eastern Saudi Arabia. These “roses”, which are mainly cemented by gypsum, carbonate, and clay minerals, occur as disc-shaped and spherical flower-like crystals. Sands, within the sand roses, are moderately-sorted, medium-grained, and sub-arkosic. Gypsum typically exceeds 20% of the volume of the roses, and locally gypsum is partly transformed to anhydrite. In addition to gypsum and anhydrite, early diagenetic modifications include precipitation of grain coating clay, dissolution of unstable grains (e.g., feldspar grains), and weak mechanical compaction. Iron oxide cement was formed when the sand roses exposed to the surface. The XRD and petrographic data indicate an increase in amounts of gypsum cement from the water table upward towards the sabkha surface. The sand roses also are larger and lighter in colour away from the water table. This study is expected to provide a better understanding of the mode of sand roses formation in the interdunes areas, as well as the diagenetic alterations in both phreatic and vadose zones.
Słowa kluczowe
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Saudi Arabian Oil Company, Dhahran, Saudi Arabia
  • King Fahd University of Petroleum and Minerals, Earth Sciences Department, PO Box 1400, Dhahran 3126, Saudi Arabia
  • King Fahd University of Petroleum and Minerals, Earth Sciences Department, PO Box 1400, Dhahran 3126, Saudi Arabia
Bibliografia
  • 1. Al-Juaidi, F.A., Millington, A., McLaren, S., 2003. Evaluating image fusion techniques for mapping geomorphological features on the eastern edge of the Arabian Shield 234 (Central Saudi Arabia). Geography Journal, 169: 117-131.
  • 2. Al-Saad, H., Ibrahim, M.I., 2002. Stratigraphy, micropaleontology, and paleoecology of the Miocene Dam Formation, Qatar. GeoArabia, 7: 9-28.
  • 3. Ali, Y.A., West, I., 1983. Relationships of modern gypsum nodules in sabkhas of loess to composition of brines and sediments in northern Egypt. Journal of Sedimentary Petrology, 53: 1151-1168.
  • 4. Aref, M.A.M., 2003. Classification and depositional environments of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt. Sedimentary Geology, 155: 87-108.
  • 5. Buurman, P., Jongmans, A.G., Pi-Pujol, M.D., 1998. Clay illuviation and mechanical clay infiltration - is there a difference? Quaternary International, 51: 66-69.
  • 6. Castens-Seidell, B., Hardie, L.A., 1984. Anatomy of a modern sabkha in a rift valley setting, northwest Gulf of California, Baja California, Mexico. AaPG Bulletin, 68: 460.
  • 7. Chen, X.Y., 1997. Pedogenic gypcrete formation in arid central Australia. Geoderma, 77: 39-61.
  • 8. Chivas, A.R., Andrew, A.S., Lyons, W.B., Bird, M.I., Donnelly, T.H., 1991. Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur. Palaeogeography, Palaeoclimatology Palaeoecology, 84: 309-332.
  • 9. Cody, R.D., 1979. Lenticular gypsum: occurrences in nature, and experimental determinations of effects of soluble green plant material on its formation. Journal of Sedimentary Petrology, 49: 1015-1028.
  • 10. Drake, N.A., Eckardt, F.D., White, K.H., 2004. Sources of sulphur in gypsiferous sediments and crusts, and pathways of gypsum redistribution in southern Tunisia. Earth Surface Processes and Landforms, 29: 1459-1473.
  • 11. Eckardt, F.D., Spiro, B., 1999. The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia. Sedimentary Geology, 123: 255-273.
  • 12. Eckardt, F.D., Drake, N., Goudie, A.S., White, K., Viles, H., 2001. The role of playas in pedogenic gypsum crust formation in the Central Namib Desert: a theoretical model. Earth Surface Processes and Landforms, 26: 1177-1193.
  • 13. El Sayed, M.I., 1993. Gypcrete of Kuwait - field investigation, petrography and genesis. Journal of Arid Environments, 25: 199-209.
  • 14. Eswaran, H., Zi-Tong, G., 1991. Properties, genesis, classification and distribution of soils with gypsum. Soil Science Society of America, Special Publication, 26: 89-119.
  • 15. Fedoroff, N.,1997. Clay illuviation in Red Mediterranean soils. Catena, 28: 171-189.
  • 16. Hardie, L.A., 1967. The gypsum-anhydrite equilibrium at one atmosphere pressure. American Mineralogist, 52: 171-200.
  • 17. Johnson, D.H., Kamal, M.R., Pierson, G.O., Ramsay, J.B., 1978. Sabkhas of Eastern Saudi Arabia. In: Quaternary Period in Saudi Arabia (eds. S.S. Al-Sayari and J.G. Zoetl): 84-93. Springer, New York.
  • 18. Masson, P.H., 1955. An occurrence of gypsum in South-west Texas. Journal of Sedimentary Petrology, 25: 72-77.
  • 19. Mougenot, D., 2000. Sand Roses of Saudi Arabia. Adapted from Poster Presentation. GEO 2000 Conf and Exhib, Bahrain.
  • 20. Reheis, M.C., 1987. Climatic implications of alternating clay and carbonate formation in semiarid soils of south-central Montana. Quaternary Research, 27: 270-282.
  • 21. Richter, R.W., 1961. The Origin and Environmental Significance of Gypsum and Anhydrite. University of Oklahoma.
  • 22. Roger, J., 1985. Industrial Mineral Resources Map of Ad Dammam, Kingdom of Saudi Arabia. Scale 1:100,000. GM-111.
  • 23. Stoops, G., 2003. Guide I ines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, WI.
  • 24. Tucker, M.E., 1978. Gypsum crusts (gypcrete) and patterned ground from northern Iraq. Zeitschrift für Geomorphologie, 22: 89-100.
  • 25. Turner, B.R., Makhlouf, I., 2005. Quaternary sandstones, northeast Jordan: age, depositional environments and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 229: 230-250.
  • 26. Warren, J.K., 1982. The hydrological setting, occurrence and significance of gypsum in Late Quaternary salt lakes in South Australia. Sedimentology, 29: 609-637.
  • 27. Warren, J.K., 1989. Evaporite Sedimemology. Prentice Hall, Englewood Cliffs, NJ.
  • 28. Warren, J.K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Berlin, Springer.
  • 29. Watson, A., 1983. Gypsum crusts. In: Chemical Sediments and Geomorphology Precipitates and Residua in the Near Surface Environment (eds. A. S Goudie and K. Pye): 133-161. New York: Academic Press.
  • 30. Watson, A., 1985. Structure, chemistry and origins of gypsum crusts in southern Tunisia and Central Namib Desert. Sedimentology, 32: 855-875.
  • 31. Watson, A., 1988. Desert gypsum crusts as palaeoenvironmental indicators: a micropetrographic study of crusts from southern Tunisia and the central Namib Desert. Journal of Arid Environments, 15: 19-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-944ce639-c132-4c52-8ddd-3718f644a743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.