PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Competitive Removal of Cationic Dye Using NiAl-LDH Modified with Hydrochar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, NiAl-LDH was modified with hydrochar using the NiAl-Hydrochar composite coprecipitation method. Materials were characterized by XRD and FT-IR analysis. XRD diffractogram and FT-IR spectra show that the NiAl-Hydrochar composite material has the characteristics of the precursors. NiAl- Hydrochar composite materials have a large adsorption capacity to adsorb cationic dyes. The adsorption follows the Langmuir adsorption isotherm model with the maximum capacity (Qmax) of the NiAl-Hydrochar composite material reaching 256.410 mg/g for malachite green and the adsorption process takes place spontaneously and endothermically. The regeneration process of NiAl-Hydrochar composites was more stable and the decrease was not significant (>70%). The selectivity of the dye mixture showed that the adsorbent was more selective for malachite green dye compared to methylene blue and rhodamine-B.
Twórcy
autor
  • Master Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia
  • Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia
  • Departement of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Insitut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui, Jati Agung, Lampung, Indonesia
  • Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih, Km. 32, Ogan Ilir, Indonesia
  • Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih, Km. 32, Ogan Ilir, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra, Indonesia
  • Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih, Km. 32, Ogan Ilir, Indonesia
  • Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia
  • Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih, Km. 32, Ogan Ilir, Indonesia
Bibliografia
  • 1. Ahmed, D.N., Naji, L.A., Faisal, A.A.H., Al-Ansari, N., & Naushad, M. 2020. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-58866-y
  • 2. Alagha, O., Manzar, M.S., Zubair, M., Anil, I., Mu'azu, N.D., & Qureshi, A. 2020. Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: Coexisting anions effect and mechanistic studies. Nanomaterials, 10(2), 1–15. https://doi.org/10.3390/nano10020336
  • 3. Almoisheer, N., Alseroury, F.A., Kumar, R., Aslam, M., Barakat, M.A. 2019. Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: kinetic, thermodynamic and isotherm analysis. RSC Advances, 9(1), 560– 568. https://doi.org/10.1039/C8RA09562K
  • 4. Badri, A F, Mohadi, R., Lesbani, A. 2021a. Adsorptive Capacity of Malachite Green onto Mg/ M3+ (M3+=Al and Cr) LDHs. Global NEST JournalGlobal NEST: The International Journal, 23(1), 74–81. https://doi.org/10.30955/gnj.003443.
  • 5. Badri, A.F., Siregar, P.M.S.B.N., Palapa, N.R., Mohadi, R., Mardiyanto, M., Lesbani, A. 2021b). Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 149–160. https://doi.org/10.9767/bcrec.16.1.10270.149-160
  • 6. Dada, A.O., Adekola, F.A., & Odebunmi, E.O. 2017. Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chemistry, 3(1), 1351653. https://doi.org/10.1080/23312009.2017.1351653
  • 7. Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Chen, Q., Wei, X., & Wang, R. 2020. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383, 123191. https://doi.org/10.1016/j.cej.2019.123191
  • 8. Daud, M., Hai, A., Banat, F., Wazir, M.B., Habib, M., Bharath, G., & Al-Harthi, M.A. 2019. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, 288, 110989. https://doi.org/10.1016/j.molliq.2019.110989
  • 9. Elmoubarki, R., Mahjoubi, F.Z., Elhalil, A., Tounsadi, H., Abdennouri, M., Sadiq, M., Qourzal, S., Zouhri, A., & Barka, N. 2017. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: Preparation, characterization and application on textile dyes removal. Journal of Materials Research and Technology, 6(3), 271–283. https://doi.org/10.1016/j.jmrt.2016.09.007
  • 10. Hashem, A., Fletcher, A.J., Younis, H., Mauof, H., & Abou-Okeil, A. 2020. Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. International Journal of Biological Macromolecules, 164, 3193–3203. https://doi.org/10.1016/j.ijbiomac.2020.08.159
  • 11. He, H., Zhang, N., Chen, N., Lei, Z., Shimizu, K., & Zhang, Z. 2019. Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk. Bioresource Technology Reports, 8, 100348. https://doi.org/10.1016/j.biteb.2019.100348
  • 12. Hidayati, N., Mohadi, R., Elfita, E., & Lesbani, A. 2020. Malachite Green Removal by Zn/Al-citrate LDHs in Aqueous Solution. Science and Technology Indonesia, 5(2), 59-61. DOI: 10.26554/sti.2020.5.2.59-61
  • 13. Hu, H., Wageh, S., Al-Ghamdi, A.A., Yang, S., Tian, Z., Cheng, B., & Ho, W. 2020. NiFe-LDH nanosheet/ carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Applied Surface Science, 511(01), 145570. https://doi.org/10.1016/j.apsusc.2020.145570
  • 14. Iryani, A., Nur, H., Santoso, M., & Hartanto, D. 2020. Adsorption study of rhodamine B and methylene blue dyes with ZSM-5 directly synthesized from Bangka Kaolin without organic template. Indonesian Journal of Chemistry, 20(1), 130–140. https://doi.org/10.22146/ijc.41369
  • 15. Jiang, D. Bin, Jing, C., Yuan, Y., Feng, L., Liu, X., Dong, F., Dong, B., & Zhang, Y.X. 2019. 2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance. Journal of Colloid and Interface Science, 540, 398– 409. https://doi.org/10.1016/j.jcis.2019.01.022
  • 16. Kaykhaii, M., Sasani, M., & Marghzari, S. 2018. Removal of Dyes from the Environment by Adsorption Process. Chemical and Materials Engineering, 6(2), 31–35. https://doi.org/10.13189/cme.2018.060201
  • 17. Lesbani, A., Palapa, N.R., Taher, T., Andreas, R., & Mohadi, R. 2020. Ni/Al Layered Double Hydroxide Intercalated with Keggin Ion [a-SiW12O40]4- for Iron(II) Removal in Aqueous Solution Aldes. Molekul, 15(3), 149–157.
  • 18. Lesbani, A., Palapa, N.R., Sayeri, R.J., Taher, T., & Hidayati, N. 2021. High reusability of NiAl LDH / biochar composite in the removal methylene blue from aqueous solution. 21(2), 421–434. https://doi.org/10.22146/ijc.56955
  • 19. Li, L., Cao, G., & Zhu, R. 2020. Adsorption of Cr(VI) from aqueous solution by a litchi shell-based adsorbent. Environmental Research, VI, 110356. https://doi.org/10.1016/j.envres.2020.110356
  • 20. Li, Q., Tang, X., Sun, Y., Wang, Y., Long, Y., Jiang, J., & Xu, H. 2015. Removal of Rhodamine B from wastewater by modified Volvariella volvacea: Batch and column study. RSC Advances, 5(32), 25337– 25347. https://doi.org/10.1039/c4ra17319h
  • 21. Lv, X., Qin, X., Wang, K., Peng, Y., Wang, P., & Jiang, G. 2019. Nanoscale zero valent iron supported on MgAl- LDH-decorated reduced graphene oxide: Enhanced performance in Cr(VI) removal, mechanism and regeneration. Journal of Hazardous Materials, 373, 176–186. https://doi.org/10.1016/j.jhazmat.2019.03.091
  • 22. Meili, L., Lins, P.V., Zanta, C.L.P.S., Soletti, J.I., Ribeiro, L.M.O., Dornelas, C.B., Silva, T.L., & Vieira, M.G.A. 2019. MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 168, 11–20. https://doi.org/10.1016/j.clay.2018.10.012
  • 23. Mikif, L.A., Abdulhusain, N., Jalil, H.M., & Salman, J.M. 2018. Removal of Organic Matters from Domestic Wastewater by Using Adsorption Technique. Mesopotamia Environmental Journal, 4(4), 16–24. https://doi.org/10.31759/mej.2018.4.4.0016
  • 24. Mrózek, O., Ecorchard, P., Vomáčka, P., Ederer, J., Smržová, D., Slušná, M.Š., Machálková, A., Nevoralová, M., & Beneš, H. 2019. Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions. Applied Clay Science, 169, 1–9. https://doi.org/10.1016/j.clay.2018.12.018
  • 25. Neolaka, Y.A.B., Lawa, Y., Naat, J.N., Riwu, A.A. P., Iqbal, M., Darmokoesoemo, H., & Kusuma, H.S. 2020. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology, 9(3), 6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040
  • 26. Oliveira, E.I.S., Santos, J.B., Gonçalves, A.P.B., Mattedi, S., & José, N.M. 2016. Characterization of the rambutan peel fiber (Nephelium lappaceum) as a lignocellulosic material for technological applications. Chemical Engineering Transactions, 50, 391–396. https://doi.org/10.3303/CET1650066
  • 27. Palapa, N.R., Taher, T., Mohadi, R., Rachmat, A., & Lesbani, A. 2021. Preparation of copper aluminum-biochar composite as adsorbent of malachite green in aqueous solution. Journal of Engineering Science and Technology, 16(1), 259-274. DOI: 10.21203/rs.3.rs-18799/v1
  • 28. Palapa, N.R., Taher, T., Rahayu, B.R., & Mohadi, R. 2020. CuAl LDH/rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution. 15(2), 525–537. https://doi.org/10.9767/bcrec.15.2.7828.525-537
  • 29. Rathee, G., Awasthi, A., Sood, D., Tomar, R., Tomar, V., & Chandra, R. 2019. A new biocompatible ternary layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-52849-4
  • 30. Razak, A.A., & Rohani, S. 2018. Sodium dodecyl sulfate-modified Fe2O3/molecular sieves for removal of rhodamine B dyes. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/3849867
  • 31. Saghir, S., Fu, E., & Xiao, Z. 2020. Synthesis of CoCu-LDH nanosheets derived from zeolitic imidazole framework-67 (ZIF-67) as an efficient adsorbent for azo dye from waste water. Microporous and Mesoporous Materials, 297. https://doi.org/10.1016/j.micromeso.2020.110010
  • 32. Shan, R.R., Yan, L.G., Yang, K., Yu, S.J., Hao, Y.F., Yu, H. Q., & Du, B. 2014. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution. Chemical Engineering Journal, 252, 38–46. https://doi.org/10.1016/j.cej.2014.04.105
  • 33. Srivatsav, P., Bhargav, B.S., Shanmugasundaram, V., Arun, J., Gopinath, K.P., & Bhatnagar, A. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (Dyes) from aqueous environment: A review. Water (Switzerland), 12(12), 1–27. https://doi.org/10.3390/w12123561
  • 34. Siregar, P.M.S.B.N., Palapa, N.R., Wijaya, A., Fitri, E.S., & Lesbani, A. 2021. Structural stability of Ni/ Al layered double hydroxide supported on graphite and biochar toward adsorption of congo red. Science and Technology Indonesia, 6(2), 85-95. DOI: 10.26554/sti.2021.6.2.85-95
  • 35. Stawiński, W., Węgrzyn, A., Mordarski, G., Skiba, M., Freitas, O., & Figueiredo, S. 2018. Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations. Applied Clay Science, 161, 6–14. https://doi.org/10.1016/j.clay.2018.04.007
  • 36. Tcheumi, H.L., Kameni Wendji, A.P., Tonle, I. K., & Ngameni, E. 2020. A low-cost layered double hydroxide (LDH) based amperometric sensor for the detection of isoproturon in water using carbon paste modified electrode. Journal of Analytical Methods in Chemistry. https://doi.org/10.1155/2020/8068137
  • 37. Wang, Y., & Zhang, L. 2020. Improved performance of 3D hierarchical NiAl-LDHs micro-flowers via a surface anchored ZIF-8 for rapid multiple-pollutants simultaneous removal and residues monitoring. Journal of Hazardous Materials, 395, 122635. https://doi.org/10.1016/j.jhazmat.2020.122635
  • 38. Zhang, M., Gao, B., Fang, J., Creamer, A.E., & Ullman, J.L. 2014. Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: Characterization and phosphate removal ability. RSC Advances, 4(53), 28171–28175. https://doi.org/10.1039/c4ra02332c
  • 39. Zhu, Z., Xiang, M., Li, P., Shan, L., & Zhang, P. 2020. Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: Extended investigations in binary dye systems. Journal of Solid State Chemistry, 288. https://doi.org/10.1016/j.jssc.2020.12144
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-944c212d-b5f6-48d6-baa9-38c5197df72f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.