PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of Copper-based Multi-walled Carbon Nanotube Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the synthesis of copper-based multi-walled carbon nanotube compositesis described. Over the last years, carbon nanotubes (CNTs) have been widely used in many scientific research fields and have found applications in several sectors, e.g. for water treatment. This work focuses on combining the exceptional characteristics of CNTs, such as high specific surface areaand antibacterial properties, with the antimicrobial / antivirus features of copper oxides. The influence of synthesis parameters and thermal treatment on the final product was studied. Copper leakage was evaluated at both pH 5 and pH 7, confirming the possibility of applying Cu-based MWCNT composites in water filtration systems.
Słowa kluczowe
Twórcy
autor
  • Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
Bibliografia
  • [1] A. Martínez-Ruiz, G. Alonso-Nuñez, Mater. Res. Bull. 43, 1492-1496 (2008).
  • [2] S. C. Smith, D. F. Rodrigues, Carbon N. Y. 91, 122-143 (2015).
  • [3] J. P. Kim, J. H. Kim, J. Kim, S. N. Lee, H. O. Park, J. Environ. Sci. (China) 42, 275-283 (2016).
  • [4] Y. T. Ong, A. L. Ahmad, S.H.S. Zein, S. H. Tan, Brazilian J. Chem. Eng. 27, 227-242 (2010).
  • [5] C. Liu, F. Wang, Q. Liang, J. Liu, Z. Chen, S. D. Wang, Ceram. Int. 42, 17916-17919 (2016).
  • [6] Z. Németh, G.P. Szekeres, M. Schabikowski, K. Schrantz, J. Traber, W. Pronk, K. Hernádi, T. Graule, R. Soc. Open Sci. 6, 181294 (2019).
  • [7] H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Coord. Chem. Rev. 254, 1117-1134 (2010).
  • [8] S. Kang, M. Herzberg, D. F. Rodrigues, M. Elimelech, Langmuir 24, 6409-6413 (2008).
  • [9] S. Kang, M. S. Mauter, M. Elimelech, S. Kang, M. S. Mauter, Langmuir 42, 7528-7534, (2008).
  • [10] S. Kang, M. Pinault, L. D. Pfefferle, M. Elimelech, Langmuir 23, 8670-8673, (2007).
  • [11] F. Yang, Q. Jiang, W. Xie, Y. Zhang, Chemosphere 185, 162-170 (2017).
  • [12] A. S. Brady-Estévez, M. H. Schnoor, C. D. Vecitis, N. B. Saleh, M. Elimelech, Langmuir 26, 14975-14982 (2010).
  • [13] A. S. Brady-Estévez, S. Kang, M. Elimelech, Small. 4, 481-484 (2008).
  • [14] G. P. Szekeres, Z. Nemeth, K. Schrantz, K. Nemeth, M. Schabikowski, J. Traber, W. Pronk, K. Hernadi, T. Graule, ACS Omega 3, 446-454 (2018).
  • [15] B. Michen, J. Fritsch, C. Aneziris, T. Graule, Environ. Sci. Technol. 47, 1526-1533 (2013).
  • [16] V. K. Gupta, S. Agarwal, T. A. Saleh, Water Res. 45, 2207-2212 (2011).
  • [17] V. K. Gupta, S. Agarwal, T. A. Saleh, J. Hazard. Mater. 185, 17-23 (2011).
  • [18] O. Akhavan, R. Azimirad, S. Safa, M. M. Larijani, J. Mater. Chem. 20, 7386-7392 (2010).
  • [19] J. D. Kim, H. Yun, G. C. Kim, C. W. Lee, H. C. Choi, Appl. Surf. Sci. 283, 227-233 (2013).
  • [20] A. Ananth, S. Dharaneedharan, M. S. Heo, Y. S. Mok, Chem. Eng. J. 262, 179-188 (2015).
  • [21] Y. J. Lee, S. Kim, S. H. Park, H. Park, Y. D. Huh, Mater. Lett. 65, 818-820 (2011).
  • [22] H. Pang, F. Gao, Q. Lu, Chem. Commun. 1076-1078, (2009).
  • [23] X. Wang, B. Xia, X. Zhu, J. Chen, S. Qiu, J. Li, J. Solid State Chem. 181, 822-827 (2008).
  • [24] X. Wang, F. Zhang, B. Xia, X. Zhu, J. Chen, S. Qiu, P. Zhang, J. Li, Solid State Sci. 11, 655-659 (2009).
  • [25] P. Cui, A. J. Wang, J. Saudi Chem. Soc. 20, 343-348 (2016).
  • [26] Y. F. Lim, J. J. Choi, T. Hanrath, J. Nanomater. (2012).
  • [27] J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, V. Meunier, Carbon N. Y. 49, 2581-2602 (2011).
  • [28] E. F. Antunes, A. O. Lobo, E. J. Corat, V. J. Trava-Airoldi, A. A. Martin, C. Veríssimo, Carbon N. Y. 44, 2202-2211 (2006).
  • [29] A. Jorio, R. Saito, G. Dresselhaus, M. S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, 2011.
  • [30] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, 1974.
  • [31] D. A. Palmer, P. Bénézeth, Solubility of Copper Oxides in Water and Steam, 2008.
  • [32] WHO, (2004). https://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/copper.pdf?ua=1 (accessed February 18, 2019)
Uwagi
EN
1. Authors would like to thank Mrs. Caroline Hain and Mr. Brian Sinnet for their help and collaboration.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94490faf-fed9-4b2d-8429-e00ceb4694ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.