PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A texture-based method for classification of schizophrenia using fMRI data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a texture-based method for classification of individuals into schizophrenia patient and healthy control groups based on their resting state functional magnetic resonance imaging (R-fMRI) data. In this research a combination of three different classifiers is proposed for classification of subjects into predefined groups. For all fMRI scans, the number of time points is reduced using principal component analysis (PCA) method, which projects data onto a new space. Then, independent component analysis (ICA) algorithm is used for estimation of the independent components (ICs). ICs are sorted based on their variance. For feature extraction a texture based operator called volume local binary patterns (VLBP) is applied on the estimated ICs. In order to obtain a set of features with large discrimination power, a two-sample t-test method is used. Finally, a test subject is classified into patient or control group using a combination of three different classifiers based on a majority vote method. The performance of the proposed method is evaluated using a leave-one-out cross validation method. Experimental results reveal that the proposed method has a very high accuracy.
Twórcy
autor
  • Department of Computer Engineering and Information Technology, Shahrood University of Technology, No. 316, Daneshgah Ave., Shahrood 3619995161, Semnan, Iran
autor
  • Department of Computer Engineering and Information Technology, Shahrood University of Technology, No. 316, Daneshgah Ave., Shahrood 3619995161, Semnan, Iran
Bibliografia
  • [1] Kandel ER. Disorders of thought and volition: schizophrenia. Princ Neural Sci 2000;4:1188–208.
  • [2] Jalili M, Knyazeva MG. EEG-based functional networks in schizophrenia. Comput Biol Med 2011;41:1178–86.
  • [3] Du W, Calhoun VD, Li H, Ma S, Eichele T, Kiehl KA, et al. High classification accuracy for schizophrenia with rest and task fMRI data. Front Hum Neurosci 2012;6:145.
  • [4] McCarley RW, Faux SF, Shenton ME, Nestor PG, Adams J. Event-related potentials in schizophrenia: their biological and clinical correlates and new model of schizophrenic pathophysiology. Schizophr Res 1991;4: 209–31.
  • [5] Ford JM. Schizophrenia: the broken P300 and beyond. Psychophysiology 1999;36:667–82.
  • [6] Levin JM, Ross MH, Renshaw PF. Clinical applications of functional MRI in neuropsychiatry. J Neuropsychiatry Clin Neurosci 1994;7:511–22.
  • [7] Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA. Temporal lobe and ‘‘default’’ hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 2008;29:1265–75.
  • [8] Demirci O, Clark VP, Magnotta VA, Andreasen NC, Lauriello J, Kiehl KA, et al. A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging Behav 2008;2:207–26.
  • [9] Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol 1933;24:417.
  • [10] Calhoun VD, Kiehl KA, Pearlson GD. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008;29:828–38.
  • [11] Arribas JI, Calhoun VD, Adali T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. Biomed Eng IEEE Trans 2010;57:2850–60.
  • [12] Shinkareva SV, Ombao HC, Sutton BP, Mohanty A, Miller GA. Classification of functional brain images with a spatio-temporal dissimilarity map. Neuroimage 2006;33:63–71.
  • [13] Ford J, Shen L, Makedon F, Flashman LA, Saykin AJ. A combined structural–functional classification of schizophrenia using hippocampal volume plus fMRI activation.24th Annu. Conf. Annu. Fall Meet. Biomed. Eng. Soc. EMBS/BMES Conf. 2002. Proc. Second Jt. IEEE, vol. 1. Eng Med Biol 2002;48–9.
  • [14] SPM8 – Statistical Parametric Mapping n.d.
  • [15] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 1996;29:51–9.
  • [16] MIDAS – Collection NAMIC: Brain Mutlimodality n.d.
  • [17] Yoon JH, Nguyen DV, McVay LM, Deramo P, Minzenberg MJ, Ragland JD, et al. Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res 2012;135:28–33.
  • [18] Tang Y, Wang L, Cao F, Tan L. Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed Eng Online 2012;11:1.
  • [19] Turner JA, Chen H, Mathalon DH, Allen EA, Mayer AR, Abbott CC, et al. Reliability of the amplitude of low-frequency fluctuations in resting state fMRI in chronic schizophrenia. Psychiatry Res Neuroimaging 2012;201:253–5.
  • [20] Fritsch V, Varoquaux G, Thyreau B, Poline J-B, Thirion B. Detecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators. Med Image Anal 2012;16:1359–70.
  • [21] Rencher AC. Methods of multivariate analysis. 2nd ed. Chichester: John Wiley & Sons Inc.; 2002.
  • [22] Sidhu GS, Asgarian N, Greiner R, Brown MRG. Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci 2012;6:74.
  • [23] Van der Maaten LJP, Postma EO, van den Herik HJ. Matlab toolbox for dimensionality reduction. Proc. Belgian-Dutch Artif. Intell. Conf., vol. 2007. 2007. pp. 439–40.
  • [24] Comon P. Independent component analysis. Higher-order statistics. 1992;29–38.
  • [25] McKeown MJ, Makeig S, Brown GG, Jung T-P, Kindermann SS, Bell AJ, et al. Analysis of fMRI data by blind separation into independent spatial components; 1997.
  • [26] Calhoun VD, Adali T. Unmixing fMRI with independent component analysis. Eng Med Biol Mag IEEE 2006;25:79–90.
  • [27] Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput 1997;9:1483–92.
  • [28] Hyvarinen A. The FastICA MATLAB toolbox. Helsinki University of Technology; 1998.
  • [29] Unay D, Ekin A, Cetin M, Jasinschi R, Ercil A. Robustness of local binary patterns in brain MR image analysis.EMBS 2007. 29th Annu. Int. Conf. IEEE. Eng Med Biol Soc 2007;2098–101.
  • [30] Zhao G, Pietikäinen M. Dynamic texture recognition using volume local binary patterns. Proceedings of European Conference on Computer Vision 2006 Workshop on Dynamical Vision; 2006. 12 pp.
  • [31] Schwarz D, Kasparek T. Brain morphometry of MR images for automated classification of first-episode schizophrenia. Inf Fusion 2013;19:97–102.
  • [32] Demirci O, Clark VP, Calhoun VD. A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia. Neuroimage 2008;39:1774–82.
  • [33] Pardo PJ, Georgopoulos AP, Kenny JT, Stuve TA, Findling RL, Schulz SC. Classification of adolescent psychotic disorders using linear discriminant analysis. Schizophr Res 2006;87:297–306.
  • [34] Job DE, Whalley HC, McIntosh AM, Owens DGC, Johnstone EC, Lawrie SM. Grey matter changes can improve the prediction of schizophrenia in subjects at high risk. BMC Med 2006;4:29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-943b6704-5bdc-457c-82e9-a89db42a9961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.