PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical calculations of water drop using a firefighting aircraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study involved a numerical analysis of the water dropping process by fixed-wing aircraft. This method, also known as air attack, is used for aerial firefighting, primarily in green areas such as forests and meadows. The conducted calculations allowed for the analysis of the process over time. The calculations were performed based on a SolidWorks model of the M18B Dromader aircraft. After defining the computational domain and setting the boundary conditions, the simulations were carried out using the ANSYS Fluent software. The resulting water dropping area was used to analyze the intensity of water distribution. The volumetric distribution and airflow velocity distribution were analyzed for specified time steps. The boundary layer where air no longer mixes with water during the final phase of water dropping was also determined. The obtained results provide an important contribution to further analyses aimed at optimizing the water dropping process by fixed-wing aircraft.
Rocznik
Strony
47--63
Opis fizyczny
Bibliogr. 29 poz., fig., tab.
Twórcy
  • Polish Air Force University, Aeronautics Faculty, Poland
  • University of Life Sciences in Lublin, Faculty of Production Engineering, Department of Machine Operation and Production Process Management
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Poland
  • Polish Air Force University, Aeronautics Faculty, Poland
Bibliografia
  • [1] Ahlgren, L. (2020). Boeing 747 Supertanker - The World's Largest Fire-Fighting Plane. Simple Flying. https://simpleflying.com/boeing-747-supertanker/
  • [2] Amorim, J. H. (2008). Numerical modelling of the aerial drop of products for forest firefighting. Universidade de Aveiro (Portugal) ProQuest Dissertations Publishing, 10598358.
  • [3] Amorim, J. H. (2011). Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part I: model development. International Journal of Wildland Fire, 20(3), 384-393. https://doi.org/10.1071/WF09122
  • [4] Amorim, J. H. (2011). Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: model validation. International Journal of Wildland Fire, 20(3), 394-406. https://doi.org/10.1071/WF09123
  • [5] Amorim, J. H., Borrego, C., & Miranda, A. I. (2008). An operational dropping model towards efficient aerial firefighting. WIT Transactions on Ecology and the Environment, 119, 51-60. https://doi.org/10.2495/FIVA080061
  • [6] Ardil, C. (2023). Aerial firefighting aircraft selection with standard fuzzy sets using multiple criteria group decision making analysis. International Journal of Transport and Vehicle Engineering, 17(4), 136-145. https://publications.waset.org/10013052/pdf
  • [7] Chaikalis, D., Evangeliou, N., Tzes, A., & Khorrami, F. (2022). Design, modelling, localization, and control for fire-fighting aerial vehicles. 2022 30th Mediterranean Conference on Control and Automation (MED) (pp. 432-437). IEEE. https://doi.org/10.1109/MED54222.2022.9837053
  • [8] Clifford, R. M. S., Hoermann, S., Marcadet, N., Oliver, H., Billinghurst, M., & Lindeman, R. W. (2018). Evaluating the effects of realistic communication disruptions in VR training for aerial firefighting. 2018 10th International conference on virtual worlds and games for serious applications (VS-Games) (pp. 1-8). IEEE. https://doi.org/10.1109/VS-Games.2018.8493423
  • [9] Clifford, R. M. S., Khan, H., Hoermann, S., Billinghurst, M., & Lindeman, R. W. (2018). The effect of immersive displays on situation awareness in virtual environments for aerial firefighting air attack supervisor training. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 1-2). IEEE. https://doi.org/10.1109/VR.2018.8446139
  • [10] Czyż, Z., & Karpiński, P. (2020). Aerodynamic characteristics of the X-tail stabilizer in a hybrid unmanned aircraft. International Journal of Simulation Modelling, 19(4), 631-642. https://doi.org/10.2507/IJSIMM19-4-534
  • [11] Czyż, Z., Karpiński, P., Skiba, K., & Wendeker, M. (2022). Measurements of Aerodynamic Performance of the Fuselage of a Hybrid Multi-Rotor Aircraft with Autorotation Capability. International Review of Aerospace Engineering (IREASE), 15(1), 12-23. https://doi.org/10.15866/irease.v15i1.21319
  • [12] Goraj, Z., Frydrychewicz, A., Ransom, E. C. P., Self, A., & Wagstaff, P. (2001). Aerodynamic, dynamic and conceptual design of a fire-fighting aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 215(3), 125-146. https://doi.org/10.1243/0954410011533121
  • [13] Han, Y., Liu, H., Tian, Y., Chen, Z., & Nie, Z. (2018). Virtual reality oriented modeling and simulation of water-dropping from helicopter. In Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality (pp. 24-29). https://doi.org/10.1145/3293663.3293669
  • [14] Ito, T., Kato, H., Goda, Y., Tagawa, S., & Negishi, E. (2010). Water-dropping aerodynamics for fire-fighting amphibian. 27th International Congress of the Aeronautical Sciences (ICAS) (pp. 1-10). http://icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/333.PDF
  • [15] Kal’avský, P., Petríček, P., Kelemen, M., Rozenberg, R., Jevčák, J., Tomaško, R., & Mikula, B. (2019). The efficiency of aerial firefighting in varying flying conditions. 2019 International Conference on Military Technologies (ICMT) (pp. 1-5). IEEE. https://doi.org/10.1109/MILTECHS.2019.8870050
  • [16] Kliment, L. K., Rokhsaz, K., Nelson, J., Terning, B., & Weinstein, E. M. (2015). usage and flight loads analysis of king airs in aerial firefighting missions. Journal of Aircraft, 52(3), 910-916. https://doi.org/10.2514/1.C032877
  • [17] Konishi, T., Kikugawa, H., Iwata, Y., Koseki, H., Sagae, K., Ito, A., & Kato, K. (2008). Aerial firefighting against urban fire: Mock-up house experiments of fire suppression by helicopters. Fire Safety Journal, 43(5), 363-375. https://doi.org/10.1016/j.firesaf.2007.10.005
  • [18] Oleksiak, J. et al. (1975) Preliminary design of agricultural airplane M-18, PZL Mielec, Research and Development Center, Poland. https://pzlmielec.pl/en/company/company-profile-and-history
  • [19] Qureshi, S., & Altman, A. (2018). Studying fluid breakup and dispersion to predict aerial firefighting ground drop patterns. 2018 AIAA Aerospace Sciences Meeting, 2018-1047. https://doi.org/10.2514/6.2018-1047
  • [20] Satoh, K., Kuwahara, K., & Yang, K. T. (2004). A numerical study of forest fire progression and fire suppression by aerial fire fighting. ASME International Mechanical Engineering Congress and Exposition (IMECE2004) (pp. 79-86). ASME. https://doi.org/10.1115/IMECE2004-60679
  • [21] Satoh, K., Maeda, I., Kuwahara, K., & Yang, K. (2005). A numerical study of water dump in aerial fire fighting. Fire Safety Science – Proceedings of the Eighth International Symposium, 8, 777-787. https://publications.iafss.org/publications/fss/8/777/view/fss_8-777.pdf
  • [22] Satoh, K., Sagae, K., Kuwahara, K., & Yang, K. T. (2000). Experiments and Numerical Simulations of Flow Patterns of Water Droplets From Fire-Fighting Helicopters. ASME International Mechanical Engineering Congress and Exposition (IMECE2000), 5(5-10), 57-64. https://doi.org/10.1115/IMECE2000-1560
  • [23] Tsujimura, H., Kubota, K., & Sato, T. (2022). Numerical Analysis of Aerial Firefighting Using Grid–Particle Coupling Method. In AIAA SCITECH 2022 Forum, 2022- 0450. https://doi.org/10.2514/6.2022-0450
  • [24] Varner, D., Kliment, L. K., & Rokhsaz, K. (2019). The aerodynamics of a civil transport in aerial firefighting. AIAA Aviation 2019 Forum, 2019- 3697. https://doi.org/10.2514/6.2019-3697
  • [25] Wang, X., Liu, H., Tian, Y., Chen, Z., & Cai, Z. (2021). A fast optimization method of water-dropping scheme for fixed-wing firefighting aircraft. IEEE Access, 9, 120815-120832. https://doi.org/10.1109/ACCESS.2021.3106538
  • [26] Walton, B. (2018). Classic MD-87s Still Earning a Living as Aerial Firefighting Tankers. Avgeekery.com. https://avgeekery.com/classic-md-87s-still-earning-a-living-as-aerial-firefighting-tankers/
  • [27] Zhao, X., Zhou, P., Yan, X., Weng, Y., & Yang, X. L. (2018). Numerical simulation of the aerial drop of water for fixed wing airtankers. 31st Congress of the International Council of the Aeronautic Sciences, 1-10. https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0474_paper.pdf
  • [28] Zhou, T., Lu, J., Wu, C., & Lan, S. (2022). Numerical calculation and analysis of water dump distribution out of the belly tanks of firefighting helicopters. Safety, 8(4), 69. https://doi.org/10.3390/safety8040069
  • [29] Zohdi, T. I. (2021). A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety. Computer Methods in Applied Mechanics and Engineering, 373, 113446. https://doi.org/10.1016/j.cma.2020.113446
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-943a8832-8f89-4296-abd8-5bf8649b8db4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.