PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odporność korozyjna stopu Ti6Al4V pokrytego biodegradowalnymi powłokami polimerowymi na bazie kaprolaktonu
Języki publikacji
EN PL
Abstrakty
EN
The aim of this study was to determine the influence of long-term exposure of Ringer’s solution on degradation of the anodically oxidated Ti6Al4V alloy coated with a biodegradable polymer coating. Polymeric coatings made of poly(glycolide-ε-caprolactone) – G-Cap and poly(glycolide- ε-caprolactone-lactide) – G-Cap-L were applied by a dip-coating method. Degradation was assessed on the basis of the results of pitting corrosion resistance and density of metal ions infiltrating to the solution. Studies were conducted for samples after 3, 6, 8, 10 and 12 weeks of exposure to the corrosive environment. In addition, topography of the surface of the polymer coating was assessed. As a result of potentiodynamic studies, the value of the polarization resistance and corrosion potential for the G-Cap and G-Cap-L coated samples were significantly decreased while simultaneous reduction of the density of metal ions infiltrating to the solution throughout the whole study period. There was also observed a faster degradation of the G-Cap coating compared to G-Cap-L, which showed local discontinuity after 12 weeks of exposure. The obtained results provide the basis for the development of polymeric coatings on surface of metal implants with predictable time / kinetics of degradation by selecting the composition of polymers while simultaneous limitation of metal ions infiltration into surrounding tissues.
PL
Celem pracy było określenie wpływu długotrwałego oddziaływania rozworu Ringera na proces degradacji utlenianego anodowo stopu Ti6Al4V pokrytego powłoką biodegradowalnego polimeru. Powłoki polimerowe wykonane z poli(glikolido- ε-kaprolaktonu) – G-Cap oraz poli(glikolido ε-kaprolaktono- laktydu) – G-Cap-L naniesiono metodą zanurzeniową (dip-coating). Proces degradacji w funkcji czasu oceniano na podstawie wyników badań odporności na korozję wżerową oraz gęstości masy jonów metalowych przenikających do roztworu. Badania przeprowadzono dla próbek po 3, 6, 8, 10 i 12 tygodniach ekspozycji na środowisko korozyjne. Ponadto oceniano topografię powierzchni powłoki polimerowej. W wyniku przeprowadzonych badań potencjodynamicznych stwierdzono wyraźne obniżenie wartości oporu polaryzacyjnego i potencjału korozyjnego dla próbek z naniesionymi powłokami G-Cap i G-Cap-L przy jednoczesnym wyraźnym ograniczeniu gęstości jonów metalowych przenikających do roztworu w całym okresie badawczym. Stwierdzono również szybszą degradację powłoki typu G-Cap w porównaniu do G-Cap-L, dla której po 12 tygodniu ekspozycji stwierdzono lokalnie występujące przerwania ciągłości. Uzyskane wyniki dają podstawę do opracowywania na powierzchni implantów metalowych powłok polimerowych o przewidywalnym czasie/określonej kinetyce degradacji, poprzez dobór składu polimerów z jednoczesnym ograniczeniem możliwości przenikania jonów metalowych do otaczających tkanek.
Rocznik
Strony
30--38
Opis fizyczny
Bibligr. 23 poz., rys.
Twórcy
autor
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Institute of Applied Geology, Faculty of Mining and Geology, Silesian University of Technology, Akademicka 2, Gliwice, Poland
autor
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
Bibliografia
  • 1. Basiaga M, Paszenda Z, Walke W, Karasiński P, Marciniak J. Electrochemical Impedance Spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti-6Al-7Nb alloy. Information Technologies in Biomedicine, Advances in intelligent Systems and Computing, Springer 2014; 284: 411-420, https://doi.org/10.1007/978-3-319-06596-0_39.
  • 2. Basiaga M, Walke W, Paszenda Z, Kajzer A. The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium Grade 4. Materials and technology 2016; 50(1): 153-158, https://doi.org/10.17222/mit.2014.241.
  • 3. Cieślik M, Engvall K, Pan J, Kotarba A. Silane-parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corrosion Science 2011; 53: 296-301, https://doi.org/10.1016/j.corsci.2010.09.034.
  • 4. Cieślik M, Kot M, Reczyński W, Engvall K, Rakowski W, Kotarba A. Parylane coatings on stainless steel 316L Surface for medical applications – Mechanical and protective properties. Materials Science and Engineering C 2012; C32: 31-35, https://doi.org/10.1016/j.msec.2011.09.007.
  • 5. Cieślik M, Zimowski S, Gołda M, Engvall K, Pan J, Rakowski W, Kotarba A. Engineering of bone fixation metal implants biointerface – Application of parylene C as versatile protective coating. Materials Science and Engineering C 2012; C32: 2431-2435, https://doi.org/10.1016/j.msec.2012.07.018.
  • 6. Dobrzynski P, Li S M, Kasperczyk J, Bero M, Gasc F, Vert M. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 1. Synthesis and characterization, Biomacromolecules 2005; 6(1): 483-488, https://doi.org/10.1021/bm0494592.
  • 7. ISO 5832-3:2017-02 – Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium alloy.
  • 8. Kajzer A, Kajzer W, Gołombek K, Knol M, Dzielicki J, Walke W. Corrosion resistance, EIS and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Archives of Metallurgy and Materials 2016; 61(2): 767-770, https://doi.org/10.1515/amm-2016-0130.
  • 9. Kasperczyk J, Hu Y, Jaworska J, Dobrzyński P, Wei J, Li S. Comparative Study of the Hydrolytic Degradation of Glycolide/l-actide/Caprolactone Terpolymers Initiated by Zirconium(IV) Acetylacetonate or Stannous Octoate. Journal of Applied Polymer Science, 2008;107: 3258-3266, https://doi.org/10.1002/app.27404.
  • 10. Kasperczyk J, Li S, Jaworska J, Dobrzyński P, Vert M. Degradation of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone: A high resolution NMR aand ESI-MS study. Polymer Degradation asd Stability 2008; 93: 990-999, https://doi.org/10.1016/j.polymdegradstab.2008.01.019.
  • 11. Kazek-Kęsik A, Jaworska J, Krok-Borkowicz M, Gołda-Cępa M, Pastusiak M, Brzychczy-Włoch M, Pamuła E, Kotarba A, Simka W. Hybrid oxide-polymer formed on Ti-Mo alloy surface enhancing antibacterial and osseointegration functions. Surface & Coatings Technology 2016;302: 158-165, https://doi.org/10.1016/j.surfcoat.2016.05.073.
  • 12. Kiel-Jamrozik M, Szewczenko J, Basiaga M, Nowińska K. Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy. Acta of Bioengineering and Biomechanic 2015; 1: 31-37.
  • 13. Krauze A, Ziębowicz A, Marciniak J. Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children. Journal of Materials Processing Technology 2005; 162-163: 209-214, https://doi.org/10.1016/j.jmatprotec.2005.02.191.
  • 14. Ma X, Xia Y, Xu H, Lei K, Lang M. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application. Materials Science and Engineering C 2016; 66: 92-99, https://doi.org/10.1016/j.msec.2016.04.072.
  • 15. Makuch K, Koczorowski R. Biokompatybilność tytanu oraz jego stopów wykorzystywanych w stomatologii. Dent Med Probl, 2010; 47:81-88.
  • 16. Marciniak J, Szewczenko J, Kajzer W. Surface modification of implants for bone surgery. Archives of Metallurgy and Materials 2015;60(3B): 13-19, https://doi.org/10.1515/amm-2015-0357.
  • 17. Maurus P B, Kaeding C C. Bioabsorbable implant material review. Oper Techn Sport Med 2004; 12(3): 158-160, https://doi.org/10.1053/j.otsm.2004.07.015.
  • 18. Orchel A, Jelonek K, Kasperczyk J, Dobrzyński P, Marcinkowski A, Pamuła E, Orchel J, Bielecki I, Kulczycka A. The influence of chai microstructure of biodegradable copolyesters obtained with low-toxic zirconium initiator to in vitro biocompatibility. Hindawi Publishing Corporation. BioMed Reserch International. 2013; Article ID 176946: 12.
  • 19. Park M, Lee J, Park Ch, Lee S, Seok H, Choy Y. Polycaprolactone coating with varying thyicknesses for controlled corrosion of magnesium. Journal of Coatings Technology and Research 2013; 10(5): 695-706, https://doi.org/10.1007/s11998-013-9474-6.
  • 20. Rusinek B, Stobiecka A, Obtułowicz K. Alergia na tytan i implant. Alergia Immunologia 2008; 5: 5-7.
  • 21. Szewczenko J, Kajzer W, Grygiel-Pradelok M, Jaworska J, Jelonek K, Gawliczek M, Libera M, Marcinkowski A, Kasperczyk J. Corrosion resistance of PLGA-coated biomaterials. Acta of Bioengineering and Biomaechanics 2017; 19(1): 173-179.
  • 22. Szewczenko J, Nowinska K, Marciniak J. Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing. Przegląd Elektrotechniczny 2011; 87(3): 228-231.
  • 23. Zini E, Scandola M, Dobrzynski P, Kasperczyk J, Bero M. Shape memory behavior of novel (L-Lactide- glycol ide-trimethylene carbonate) terpolymers, Biomacromolecules 2007; 8(11): 3661-3667, https://doi.org/10.1021/bm700773s.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-943a220c-334f-468f-995e-44232c7b8dfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.