Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Perovskite Barium strontium titanate (Ba0.7Sr0.3TiO3 (BST)) nanorod film has been effectively produced and characterized hydrothermal. Prepared TiO2 nanorods hydrothermally; after that, they were deposited on an FTO substrate for 150 °C at four h. X-ray diffraction (XRD) showed that the Ba0.7Sr0.3TiO3 film was polycrystalline with a low trace of peaks that belonged to TiO2, indicating that the BST films needed more reaction time. According to the optical properties, the band gap of the BST nanorod film was 3.16 eV, and strong photoluminescence centred at 367 nm. The data from the BST film can be used to calculate the energy gap (Eg). A DC conductivity measurement showed that it increases with increasing temperature up to the Curie temperature, and the behaviour was the opposite. Photoelectrode properties like open circuit voltage (Voc), short circuit photocurrent density (Jsc), fill factor FF, and efficiency have been measured. The efficiency was 0.071 when preparing Solid-state dye-sensitized solar cells (ss-DSSCs) based on BST film.
Wydawca
Rocznik
Tom
Strony
328--337
Opis fizyczny
Bibliogr. 54 poz., fig., tab.
Twórcy
autor
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
autor
- Middle Technical University- Electrical Engineering Technical College, Baghdad, Iraq
autor
- Department of Applied Science, University of Technology, Iraq
autor
- Department of Applied Science, University of Technology, Iraq
autor
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800 Malaysia
autor
- Department of Applied Physics, Aligarh Muslim University, Aligarh 202002, India
autor
- Department of Materials Science and Engineering, Chosun University, South Korea
Bibliografia
- 1. Setter N., and Damjanovic D. Ferroelectric thin films: Review of materials, properties, and applications. Appl. Physics. 2006; 100-051606, https://doi.org/10.1063/1.2393042.
- 2. Cao, W.Q., F.L. Li, M.M. Ismail and G. Xiong. Dielectric properties of Y2O3 and Nb2O5 Codoped barium titanate ceramics. Jpn. J. Appl. Phys. 51 041503.2012; https://doi.org/10.1143/JJAP.51.041503.
- 3. Cao, W.Q. and M.M. Ismail. Giant dielectric constant phenomena in Bi2O3-doped Ba0.8Sr0.2TiO3 ferroelectrics. Mater. Technol. 2017; 32: 321–326, https://doi.org/10.1080/10667857.2016.1216297.
- 4. Al-Sarraj Z.S.A., Ismail M.M., Ali S.M. and Cao W.Q. Structural Characterization of Nano-Crystalline BaTiO3 Powder Prepared Using Hydrothermal Method. J. Adv. Mater. Res. 2011; 324: 205–208. https://doi.org/10.4028/www.scientific.net/AMR.324.205.
- 5. Cao W.Q., Xu L.F., Ismail M.M., Huang L.L. Colossal dielectric constant of NaNbO3 doped BaTiO3 ceramics. J. Mater. Sci-Poland. 2016; 34, 322–329, https://doi.org/10.1515/msp-2016-0065.
- 6. Ismail M.M. Ferroelectric characteristics of Fe/Nb co-doped BaTiO3. J. Mod. Phys. Lett. 2019; 33: 1950261, https://doi.org/10.1142/S0217984919502610.
- 7. Singh B.S., Sharma B.H., Sarma K.N.H., Phanjoubam S. Structural and optical properties of barium strontium titanate (Ba0.5Sr0.5TiO3) thin films. Ferroelectric Lett Sect. 2006; 33: 83–90, https://doi.org/10.1080/07315170600870659.
- 8. Iskandar J., Syafutra H., Juansah J., Irzaman. Characterizations of Electrical and Optical Properties on Ferroelectric Photodiode of Barium Strontium Titanate (Ba0.5Sr0.5TiO3) Films Based on the Annealing Time Differences and its Development as Light Sensor on Satellite Technology. J. Proc. Environ. Sci. 2015; 24: 324–328, https://doi.org/10.1016/j.proenv.2015.03.042.
- 9. Khare A., Chauhan N. The effect of Mg doping on structural and luminescent properties of Barium Strontium Titanate (BST). J. Phys. Procedia. 2015; 76: 86–91, https://doi.org/10.1016/2015.10.016.
- 10. Dhumal G.S., Kulkarni B.S., Jayasingh E.M., Joshi B.P., Salunkhe J.D. Effect of cobalt doping on structural, dielectric and magnetodielectric properties of Ba0.95Sr0.05TiO3 ceramics. J. Mater. Sci: Mater. Electron. 2015; 27: 1421–1426, https://doi.org/10.1007/s10854-015-3906-2.
- 11. Attar S.A., Sichani S.E., Sharafi S. Structural and dielectric properties of Bi-doped barium strontium titanate nanopowders synthesized by sol–gel method. J. Mater. Res. Technol. 2017; 6: 108–115, https://doi.org/10.1016/J.JMRT.2016.05.001.
- 12. Singh B.S., Sharma B.H., Sarma K.N.H., Phanjoubam S. Optical and structural properties of nanosized barium strontium titanate (Ba0.6Sr0.4TiO3) thin film. Mod. Phys. Lett. B. 2008; 22: 693–700, https://doi.org/10.1080/073151706008706598.
- 13. Lee Y.D., Lee H.K., Lee H.M., Cho I.N., Kim Y.B. Synthesis of electrospun BaSrTiO3/PVP nanofibers. J. Sol-Gel Sci Technol. 2010; 53: 43–49, https://doi.org/10.1007/s10971-009-2054-7.
- 14. Ramadass N. ABO3-Type Oxides - Their Structure and Properties -- A Bird’s Eye View. Mater. Sci. Eng. 1978; 36: 231–239, https://doi.org/10.1016/0025-5416(78)90076-9.
- 15. Kaur A., Singh L., Asokan K. Electrical relaxation and conduction mechanisms in iron doped barium strontium titanate. Ceram. Int. 2018; 44: 3751–3759, https://doi.org/10.1016/j.ceramint.2017.11.15.
- 16. Gao L., Guan Z., Huang S., Liang K., Chen H., Zhang J. Enhanced dielectric properties of barium strontium titanate thin films by doping modification. J. Mater. Sci: Mater. Electron. 2019; 30: 12821–12839. https://doi.org/10.1007/s10854-019-01670-w.
- 17. Wang Y., Chen W., Wang B., Zheng Y. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. J. Mater. 2014; 7: 6377–6485. https://doi.org/10.3390/ma7096377.
- 18. Salman N.O., Ahmed S.D., Abed L.A., Dawood O.M. Preparation pure ZnO, La-doped ZnO nanoparticles using sol-gel technique: Characterization and Evaluation Antibacterial Activity. IOP Conf. Ser. Mater. Sci. Eng. 2019; 1–9. http://dx.doi.org/10.1088/1757-899X/518/3/032012.
- 19. Shaban N., Bahar M. Synthesis and Characterization of Fe and Ni Co-Doped Ba0.6Sr0.4TiO3 Prepared by Sol-Gel Technique. J. Theor. Comput. Sci. 2017; 4: 1–6. https://doi.org/10.4172/2376-130x.1000157.
- 20. Iskandar J., Jenie P.R., Siregar J.U., Yuliarto B., Irzaman. Application of thin film barium strontium titanate (BST) in a microcontroller based tool to measure oxygen saturation in blood. Ferroelectrics, 2020; 554: 134–143. https://doi.org/10.1080/00150193.2019.1684755.
- 21. Reddy N.I., Reddy V.C., Cho G.M., Shim J. Morphological and chemical structure of silver-doped barium strontium titanate thin films fabricated via pulsed laser deposition. Mater. Res. Express 2017; 4: 1–12. https://doi.org/10.1088/2053-1591/aa7c6d.
- 22. Palupi K.E., Irzaman, Alatas H., Yuliarto B., Umam R., Andriana B.B., Sato H. Analysis of Spectroscopy: Mustard Greens Leaf of Chlorophyll as a Ba0.2Sr0.8TiO3 (Barium Strontium Titanate) Film Dopant. Integrated Ferroelectrics, 2019; 201: 75–85, https://doi.org/10.1080/10584587.2019.1668692.
- 23. Irzaman, Dahrul M., Yuliarto B., Hammam A.K., Alatas H. Effects of Li and Cu dopants on the crystal structure of Ba0.65Sr0.35TiO3 thin films. Ferroelectrics Letters, 2018; 45: 49–57. https://doi.org/10.1080/07315171.2018.1537333.
- 24. Shen Y.Z., Wang Y., Tang Y., Yu Y., Luo Q.W., Wang X., Li Y., Wang Z., Song F. Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J. Materiomics, 2019; 5: 641–6482. https://doi.org/10.1016/j.jmat.2019.06.003.
- 25. Irzaman, Putra R.I., Aminullah, Syafutra H., Alatas H. Development of ferroelectric solar cells of barium strontium titanate (BaxSr1-xTiO3) for substituting conventional battery in LAPAN-IPB Satellite (LISAT). Procedia Environmental Sciences, 2016; 33: 607–614. https://doi.org/10.1016/j.proenv.2016.03.114.
- 26. Enhessari M., Parviz A., Ozaee K., Abyaneh H.H. Synthesis and characterization of barium strontium titanate (BST) micro/nanostructures prepared by improved methods. Journal of Nano Dimension, 2011; 2: 85–103. https://doi.org/10.7508/ijnd.2011.02.001.
- 27. Cao W.Q., Li F.L., Ismail M.M. and Xiong G. Dielectric Properties of Y2O3 and Nb2O5 Co-Doped Barium Titanate Ceramics. Jpn. J. Appl. Phys. 2012; 51: 041503. https://doi.org/10.1143/jjap.51.041503-5.
- 28. Rashad M.M., Turky O.A., Kandil T.A. Optical and electrical properties of Ba1-xSrxTiO3 nanopowders at different Sr2+ ion content. J. Mater. Sci: Mater. Electron. 2013; 24: 3284–3291. https://doi.org/10.1007/s10854-013-1244-9.
- 29. Goud P.J., Alkathy S.M., Sandeep K., Ramakanth S., Raju J.C.K. Influence of laser fluence on structural, optical and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci: Mater. Electron. 2018; 29: 15973–15982. https://doi.org/10.1007/s10854-018-9683-y.
- 30. Podhorodecki A., Gaponenko V.N., Banski M., Rudenko V.M., Khoroshko S.L., Sieradzki A., Misiewicz J. Green emission from barium–strontium titanate matrix introduced into nano-porous anodic alumina. Optical Materials, 2012; 34: 1570–1574. http://dx.doi.org/10.1016/j.optmat.2012.03.025.
- 31. Wu A., Vilarinho M.P., González M. Synthesis and characterization of barium strontium titanate nanoparticles by low temperature ambient pressure sol process. J. Nanopart. Res. 2010; 12: 2221–2231. https://doi.org/10.1007/s11051-009-9788-6.
- 32. Liu J., Wu D., Deng Y., Li A., Ming N. Structure and properties of barium strontium titanate nanoparticles synthesized by a hydrothermal method. Integrated Ferroelectrics, 2006; 78: 289–297. http://dx.doi.org/10.1080/10584580600663441.
- 33. Zhao Y., Gu X., Qiang Y. Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films, 2010; 520: 2814–2818. http://dx.doi.org/10.1016/j.tsf.2011.12.055.
- 34. Salman O.N., Agool I.R., Ismail M.M. Preparation of the scattering layer based on TiO2 nanotube and their dye sensitized solar cell applications. Appl. Phys. A. 2017; 123: 402. https://doi.org/10.1007/s00339-017-1012-4.
- 35. Chen Y., Zhang L., Zhang Y., Gao H., Yan H. Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv. 2018; 8: 10489–10508. https://doi.org/10.1039/c8ra00384j.
- 36. Dewi R. Optical characterization of Ba1-xSrxTiO3 thin film properties using ultraviolet-visible spectroscopy. AIP Conference Proceedings, 2020; 2219: 040001-6. https://doi.org/10.1063/5.0003054.
- 37. Joshi A.U., Lee S.J. Template-Free Hydrothermal Synthesis of Single-Crystalline Barium Titanate and Strontium Titanate Nanowires. Small, 2005; 12: 1172–1176. http://dx.doi.org/10.1002/smll.200500055.
- 38. Salman O.N., Ismail M.M., Ali T.H. Growth Time Influence on Optical and Electrical Properties of TiO2 Nanorods Prepared via Hydrothermal Method. J. Phys. Conf. Ser. 2021; 2114: 012063. https://doi.org/10.1088/1742-6596/2114/1/012063.
- 39. Jasim A.S., Salman O.N. Hydrothermally native defect induced transparent p-n TiO2 homojunction diode. Opt. Quant. Electron. 2023; 55: 702, 59–69. http://dx.doi.org/10.1007/s11082-023-04984-6.
- 40. Yousif N.A., AL-Jawad S.M.H., Taha A.A. Preparation and characterization of pure and Ni/Co–co-doped Fe3O4 nanoparticles and investigation of their in vitro hemolysis effects. Plasmonics, 2023; 19: 2345–2361. https://doi.org/10.1007/s11468-023-02167-3.
- 41. Yousif N.A., AL-Jawad S.M.H. Influence of laser wavelength on morphological and optical properties of ZnO nanoparticles prepared by laser ablation in water. J. Phys.: Conf. Ser. 2021; 1795: 012056. https://doi.org/10.1088/1742-6596/1795/1/012056.
- 42. Dong H., Lu G., Jin D., Chen J., Cheng J. Enhanced tunability of sandwich-like structural barium strontium titanate thin films on stainless steel substrates. J. Mater. Sci. 2016; 51: 8414–8421. https://doi.org/10.1007/s10853-016-0093-3.
- 43. Cao C., Hu C., Wang X., Wang S., Tian Y., Zhang H. UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors and Actuators B, 2011; 156: 114–119. http://dx.doi.org/10.1016/j.snb.2011.03.080.
- 44. Wu J.Y., Wang N., Wu Y.S., Chen M.X. Transparent barium strontium titanate ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 2011; 94: 2889–2891. https://doi.org/10.1111/j.1551-2916.2011.04506.x.
- 45. Orhan E., Pontes M.F., Pinheiro D.C., Longo E., Pizani S.P., Varela A.J., Leite R.E., Boschi M.T., Beltran A., Andres J. Theoretical and experimental study of the relation between photoluminescence and structural disorder in barium and strontium titanate thin films. J. Eur. Ceram. Soc. 2005; 25: 2337–2340. https://doi.org/10.1016/j.jeurceramsoc.2005.03.053.
- 46. Salman N.O., Dawood O.M., Ali K.A., Ahmed S.D., Hassoon I.K. Low cost synthesis of ZnO nano thin films by electrochemical deposition. Digest Journal of Nanomaterials and Biostructures, 2017; 12: 719–726.
- 47. Samantaray B.C., Goswami N.L.M., Bhattacharya D., Ray K.S., Acharya N.H. Photoluminescence properties of Eu3+-doped barium strontium titanate (Ba,Sr)TiO3 ceramics. Mater. Lett. 2004; 58: 2299–2301. http://dx.doi.org/10.1016/j.matlet.2004.03.001.
- 48. Ghosh K.S., Rout K.S., Tiwari A., Yadav P., Sczancoski C.J., Filho R.G.M., Cavalcante S.L. Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1-xSrx)MoO4 ceramics. J. Mater. Sci: Mater. Electron. 2015; 26: 8319–8335. http://dx.doi.org/10.1007/s10854-015-3498-x.
- 49. Kavitha V., Mayandi J., Mahalingam P., Sethupathi N. Optical and structural properties of tungsten-doped barium strontium titanate. Materials Today: Proceedings, 2020; 23: 12–15. http://dx.doi.org/10.1016/j.matpr.2019.05.351.
- 50. Sami T.A., Salman N.O., Ismail M.M. Ferroelectric photodiode based on BaTiO3 nanorods film. J. Phys.: Conf. Ser. 2021; 1795: 12047–13. http://dx.doi.org/10.1088/1742-6596/1795/1/012047.
- 51. Ismail M.M., Salman O.N., Ali T.H. Effect of TiO2 nanorod thickness on optical properties of Ba0.8Sr0.2TiO3 film via hydrothermal method. J. Solid State Electrochemical, 2021; 25: 2429–2441. https://doi.org/10.1007/s10008-021-05022-9.
- 52. Salman O.N., Ismail M.M., Dawood M.O. Porous BaTiO3 film for dye-sensitized solar cells. Opt. Quant. Electron. 2023; 55: 469. https://doi.org/10.1007/s11082-023-04741-9.
- 53. Husam N., Odai N., Salman O.N., Ismail M.M. Influence of NaOH concentration on structural, morphological, optical, and electrical characterization of perovskite sodium bismuth titanate prepared by hydrothermal method. ECS J. Solid State Sci. Technol. 2024; 13: 043009. https://doi.org/10.1149/2162-8777/ad3d08.
- 54. Nahedh H., Salman O.N., Mukhlis M., Ismail. Performance of dye-sensitized solar cells of perovskite sodium bismuth titanate layer and studying the effect of Fe-doped on the photovoltaic properties. J. Appl. Phys. A, 2024; 130: 843, 1–14. https://doi.org/10.1007/s00339-024-07998-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94362300-f622-48d2-9663-1944d8ffc661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.