PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of micro-morphology and micro-structure on fly ash triboelectrostatic beneficiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fly ash is a complex system with a variety of fine particles. The complex relationship between unburned carbon and ash particles has an important influence on the efficiency of fly ash triboelectrostatic beneficiation. The particles adhered to the two electrode plates are collected through the triboelectrostatic beneficiation experiment. The scanning electron microscopy and X-ray fluorescence are used to detect the microscopic differences between the particles of positive and negative plates. The results show that the flaky carbon particles in the raw ash and the ash particles larger than 4µm are more easily separated, while it is converse for the ash particles with particle size less than 4µm. With the particle size less than 4µm, it is gradually more obvious for the influence of adhesion caused by the roughness surface of spherical unburned carbon particles, and the surface pores structure of porous carbon particles. The binding structure between unburned carbon and ash particles is complex and changeable. It is not beneficial to improve the separation efficiency. Therefore, the micro-structure and micro-morphology have an important effect on fly ash triboelectrostatic beneficiation. Some suggestions were proposed from the microscopic point to improve the efficiency of fly ash triboelectrostatic beneficiation.
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 26 poz., fot., rys.
Twórcy
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining & Technology
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering & Technology, China University of Mining & Technology
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering & Technology, China University of Mining & Technology
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering & Technology, China University of Mining & Technology
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering & Technology, China University of Mining & Technology
Bibliografia
  • AHMARUZZAMAN, M., 2010. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36, 327-363.
  • BALTRUS, J., DIEHL, J., SOONG, Y., SANDS, W., 2002. Triboelectrostatic separation of fly ash and charge reversal. Fuel. 81, 757-762.
  • BAN, H., LI, T., HOWER, J., SCHAEFER, J., STENCEL, J., 1997. Dry tribo-electrostatic beneficiation of fly ash. Fuel. 76, 801-805.
  • BROWN, P., JONES, T., BÉRUBÉ, K., 2011. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations. Environ. Pollut. 159, 3324-3333.
  • CANGIALOSI, F., NOTARNICOLA, M., LIBERTI, L., STENCEL, J., 2008. The effects of particle concentration and charge exchange on fly ash beneficiation with pneumatic triboelectrostatic separation. Sep. Purif. Technol. 62, 240-248.
  • CANGIALOSI, F., NOTARNICOLA, M., LIBERTI, L., STENCEL, J., 2009. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation. J. Hazard. Mater. 164, 683-688.
  • CAO, Y., LI, G., LIU, J., ZHANG, H., ZHAI, X., 2012. Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column. J. S. Afr. I. Min. Metall. 112, 891-896.
  • DANIEL, T., FAN, M., JIANG, X., 2009. Dry coal fly ash cleaning using rotary triboelectrostatic separator. Min. Sci. Tech. 19, 642-647.
  • GAO, M., ZHANG, X., CHEN, Q., 2003. De-Ashing of Fine-Coal Using Triboelectrostatic Beneficiation Technology. J. China. U. Min. Techno. 6, 674-677.
  • HAN, G., YANG, S., PENG, W., HUANG, Y., WU, H., CHAI, W., LIU, J., 2018. Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process. J. Clean Prod. 178, 804-813.
  • HE, X., SUN, H., WANG, W., ZHANG, X., 2020. Predictions of triboelectrostatic separation of minerals in low-rank coal based on surface charging characteristics in relation to their structures. Fuel. 264 .
  • HE, Y., XIE, W., ZHAO, Y., LI, H., WANG, S., 2017. Triboelectrostatic separation of pulverized fuel of coal power plant based on mineralogical analyses. Int. J. Miner. Process. 16, 67-12.
  • HUANG, Y., TAKAOKA, M., TAKEDA, N., 2003. Removal of unburned carbon from municipal solid waste fly ash by column flotation. Waste Manage. 23, 307-313.
  • IYER, R., SCOTT, J., 2001. Power station fly ash — a review of value-added utilization outside of the construction industry. Resour. Conserv. Recycl. 31, 217-228.
  • KIM, J., CHO, H., KIM, S., CHUN, H., 2000. Electrostatic beneficiation of fly ash using an ejector-tribocharger. J. Environ. Sci. Health Part A. 35, 357-377.
  • KIM, J., CHO, H., KIM, S., 2001. Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator. J. Environ. Sci. Health Part A. 36, 1709-1724.
  • LI, H., CHEN, Y., ZHANG, X., LI, C., 2019. The role of electrical heating on tribo-charging and tribo-electrostatic. Physicochem. Probl. Mineral Pro. 55, 896-905.
  • LI, H., CHEN, Y., WU, K., ZHANG, X., 2013. Particle Collision during the tribo-electrostatic beneficiation of fly ash based on infrared thermography. J. S. Afr. Inst. Min. Metall. 113, 899-904.
  • LI, H., CHEN, Y., ZHAO, Y., ZHANG, X., WU, K., 2015. The Effect of the Cross-Sectional Shape of Friction Rods on the Triboelectrostatic Beneficiation of Fly Ash. Int. J. Coal Prep. Util. 35, 113-124.
  • LI, H., CHEN, Y., ZHANG, X., ZHAO, Y., TAO, Y., LI, C., HE, X., 2016. Experimental study on triboelectrostatic beneficiation of wet fly ash using microwave heating. Physicochem. Probl. Mineral Pro. 52, 328-341.
  • LI, H., SHANG, B., FENG, S., WU, H., LIN, J., 2006. Research on the aphysical and chemical properities and microstructure of fly ash Grain. Coal Ash China. 5, 18-20.
  • XING, Y., GUO, F., XU, M., GUI, X., LI, H., LI, G., XIA, Y., HAN, H., 2019. Separation of unburned carbon from coal fly ash: A review. Powder Technol. 353, 372-384 .
  • YAO, Z., JI, X., SARKER, P., TANG, J., GE, L., XIA, M., XI, Y., 2015. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 141, 105-121.
  • YAO, Z., XIA, M., SARKER, P., CHEN, T., 2014. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel. 120, 74-85.
  • ZHANG, L., TAO, Y., TAO, D., ZHANG, W., YANG, L., 2018. Experimental study and numerical simulation on fly ash separation. Physicochem. Probl. Mineral Pro.53, 722-731.
  • ZHANG, L., TAO, Y., YANG, L., 2018. Research on flow field and kinematic characteristics of fly ash particles in rotary tribo-electrostatic separator. Powder Technol. 336, 168-179.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94332c69-a428-4f9f-bd84-9b660732d465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.