PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of using artificial intelligence and robotics in logistics service production: an application in 3PLS and 4PLS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The purpose of this study is to investigate how artificial intelligence (AI) and robotic awareness, perceived organizational support, and competitive psychological climate approaches relate to turnover intention. In the literature, studies on robotic awareness and turnover intention have been undertaken in a variety of industries. In this respect, this study aims to address the absence in the literature of research on logistics services providers. This study aims to help businesses understand how to retain employees and foster a more inclusive and supportive workplace. Methods: The study utilizes survey information from 100 senior managers in the operations function of logistics service providers. The outcomes are obtained by modeling structural equations with SmartPLS. Data from the survey were gathered using the snowball sampling technique. Results: The results of the research reveal the effect of artificial intelligence and robotic awareness on competitive psychological and turnover intention. Conclusions: The study aims to explore the role of a competitive psychological climate and organizational support in mediating the relationship between AI and robotics awareness and turnover intention. We identify that awareness of AI and robotics has a considerable, favorable effect on the psychological climate of competition and turnover intention. We also find that the competitive psychological atmosphere has a substantial, favorable effect on turnover intention. In addition, organizational support has been demonstrated to have a substantial, favorable effect on turnover intention. However, it was not possible to identify the mediating role of organizational support and the psychological environment of competition in moderating the association between awareness of AI and robotics and turnover intention. On the basis of the research's findings, suggestions were made.
Czasopismo
Rocznik
Strony
347--360
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Logistics, Kahramankazan Vocational School, Başkent University, Ankara, Turkey
  • Faculty of Economics and Administrative Sciences, Logistics Management, İstanbul Arel University, İstanbul, Turkey
Bibliografia
  • 1. Aldabbas, H., Pinnington, A., & Lahrech, A. (2023). The influence of perceived organizational support on employee creativity: The mediating role of work engagement. Current Psychology, 42(8), 6501-6515. https://doi.org/10.1007/s12144-021-01992-1
  • 2. Acemoğlu, D., Restrepo, P. (2017). Robots and Jobs: Evidence from Us Labor Markets NBER WorkingPaper No. w23285. https://doi.org/10.3386/w23285
  • 3. Akhtar, P., Kaur, S., & Punjaisri, K. (2017). Chain coordinators’ strategic leadership and coordination effectiveness: New Zealand-Euro agri-food supply chains. European Business Review, 29(5), 515-533. https://doi.org/10.1108/EBR-08-2015-0082
  • 4. Baldassarre, F., Ricciardi, F., & Campo, R. (2017, October). The advent of Industry 4.0 in manufacturing industry: Literature review and growth opportunities. In DIEM: Dubrovnik International Economic Meeting (Vol. 3, No. 1, pp. 632-643). Sveučilište u Dubrovniku.
  • 5. Berger, R. (2016). The Industrie 4.0 transition quantified. How the fourth industrial revolution is reshuffling the economic, social and industrial model.
  • 6. Brougham, D., Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239-257. https://doi.org/10.1017/jmo.2016.55
  • 7. Calitz, A. P., Poisat, P., & Cullen, M. (2017). The future African workplace: The use of collaborative robots in manufacturing. SA Journal of Human Resource Management, 15(1), 1-11.
  • 8. Cezanne, C., & Saglietto, L. (2015). Redefining the boundaries of the firm: the role of 4PLs. The International Journal of Logistics Management, 26(1), 30-41. https://doi.org/10.1108/IJLM-06-2012-0054
  • 9. Dawley, D., Houghton, J. D., & Bucklew, N. S. (2010). Perceived organizational support and turnover intention: The mediating effects of personal sacrifice and job fit. The Journal of social psychology, 150(3), 238-257. https://doi.org/10.1080/00224540903365463
  • 10. Evjemo, L. D., Gjerstad, T., Grøtli, E. I., & Sziebig, G. (2020). Trends in smart manufacturing: Role of humans and industrial robots in smart factories. Current Robotics Reports, 1, 35-41. https://doi.org/10.1007/s43154-020-00006-5
  • 11. Gim, G. C., Desa, N. M., & Ramayah, T. (2015). Competitive psychological climate and turnover intention with the mediating role of affective commitment. Procedia-Social and Behavioral Sciences, 172, 658-665. https://doi.org/10.1016/j.sbspro.2015.01.416
  • 12. Grabowska, S. (2020). Smart factories in the age of Industry 4.0. Management systems in production engineering, 28(2), 90-96. https://doi.org/10.2478/mspe-2020-0014
  • 13. Hair, J.F., Tomas, G., Hult, M., Ringle, C.M. and Sarstedt, M. (2014), A Primer on Partial Least Square Structural Equations Modeling (PLS-SEM), Sage, Los Angeles, LA.
  • 14. Hassan, M., Akram, A., & Naz, S. (2012). The relationship between person organization fit, person-job-fit and turnover intention in banking sector of Pakistan: The mediating role of psychological climate. International Journal of Human Resource Studies, 2(3), 172. https://doi.org/10.5296/ijhrs.v2i3.2286
  • 15. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • 16. Khaliq, A., Waqas, A., Nisar, Q. A., Haider, S., & Asghar, Z. (2022). Application of AI and robotics in hospitality sector: A resource gain and resource loss perspective. Technology in Society, 68, 101807. https://doi.org/10.1016/j.techsoc.2021.101807
  • 17. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242. https://doi.org/10.1007/s11576-014-0424-4
  • 18. Li, J. J., Bonn, M. A., & Ye, B. H. (2019). Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172-181. https://doi.org/10.1016/j.tourman.2019.02.006
  • 19. Mendis, M. V. S. (2017). The impact of reward system on employee turnover intention: A study on logistics industry of Sri Lanka. International journal of scientific & technology research, 6(9), 67-72.
  • 20. Mehmann, J., Teuteberg, F., & Freye¹, D. (2013). Requirements on a 4PL-Platform in After-Crop Logistics.
  • 21. Pavlić Skender, H., Mirković, P. A., & Prudky, I. (2017). The role of the 4PL model in a contemporary supply chain. Pomorstvo, 31(2), 96-101. https://doi.org/10.31217/p.31.2.3
  • 22. Potkonjak, V., Svetozarevic, B., Jovanovic, K., & Holland, O. (2011). The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic systems. International Journal of Advanced Robotic Systems, 8(5), 69.
  • 23. Savela, N., Turja, T., Oksanen, A. (2018). Social Acceptance of Robots in Different Occupational Fields: A Systematic Literature Review, International Journal of Social Robotics, 10, 493–502. https://doi.org/10.1007/s12369-017-0452-5
  • 24. Segovia-Perez, M., Jianu, B., Tussyadiah, I. (2023, January). Assessing Turnover Intentions of Algorithmically Managed Hospitality Workers. In ENTER22 e-Tourism Conference (pp. 349-354). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25752-0_39
  • 25. Sumardjo, M., & Supriadi, Y. N. (2023). Perceived Organizational Commitment Mediates the Effect of Perceived Organizational Support and Organizational Culture on Organizational Citizenship Behavior. Quality-Access to Success, 24(192), 376-384. https://doi.org/10.47750/QAS/24.192.45
  • 26. Taherdoost, H. (2016). Sampling methods in research methodology; how to choose a sampling technique for research. How to choose a sampling technique for research (April 10, 2016). https://doi.org/10.2139/ssrn.3205035
  • 27. Takaya, R., & Ramli, A. H. (2020, September). Perceived organizational support and turnover intention. In International Conference on Management, Accounting, and Economy (ICMAE 2020) (pp. 59-63). Atlantis Press. https://doi.org/10.2991/aebmr.k.200915.015
  • 28. Thu Suong, H. T. (2020). Impacts of job stress and dissatisfaction on turnover intention. A critical analasys of logistics industry–evidence from Vietnam.
  • 29. Tupa, J., Simota, J., & Steiner, F. (2017). Aspects of risk management implementation for Industry 4.0. Procedia manufacturing, 11, 1223-1230. https://doi.org/10.1016/j.promfg.2017.07.248
  • 30. Wang, Q., & Wang, C. (2020). Reducing turnover intention: perceived organizational support for frontline employees. Frontiers of Business Research in China, 14(1), 1-16. https://doi.org/10.1186/s11782-020-00074-6
  • 31. Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195. https://doi.org/10.2307/20650284
  • 32. Win, A. (2008). The value a 4PL provider can contribute to an organization. International Journal of Physical Distribution & Logistics Management, 38(9), 674-684. https://doi.org/10.1108/09600030810925962
  • 33. Yıldız, S. (2018). Turist rehberliği mesleğinde robot rehberlerin yükselişi. Süleyman Demirel University Visionary Journal, 10(23), 164-177. https://doi.org/10.21076/vizyoner.481225
  • 34. Zacharia, Z. G., Sanders, N. R., Nix, N. W. (2011). The emerging role of the third‐party logistics provider (3PL) as an orchestrator. Journal of business logistics, 32(1), 40-54. https://doi.org/10.1111/j.2158-1592.2011.01004.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-942d596e-fe79-4040-9276-c561f9b2dd93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.