PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposed design fire scenarios for underground hard rock mines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given the complexity and uniqueness of underground hard rock mines, the application of the design fire scenario approach is recommended when evaluating fire safety in mines. Providing a full set of design fire scenarios – ensuring that several important life safety aspects are covered – for a mine can be challenging. The question is whether a catalogue of potential clusters of design fire scenarios could be developed, covering important aspects found underground? Given the general lack of research into design fires in the mining industry, this paper provides a unique analysis of design fire scenarios in underground hard rock mines. Taking advantage of several different and diverse data sources, a comprehensive analysis with holistic character is provided where several proposed clusters of design fire scenarios and analyses of what criteria to apply when evaluating the scenarios are presented. The analysis of suitable criteria highlights the toxicity of the emitted smoke and decrease in visibility as potential criteria underground. The proposed scenarios focus on influencing parameters such as the fire behaviour, position of fire, fire load, and smoke spread. The proposed clusters of design fire scenarios will provide a key tool when evaluating fire protection measures in an underground mine.
Rocznik
Strony
261--277
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • The University of Queensland, Sustainable Minerals Institute, Australia
Bibliografia
  • [1] NFPA. SFPE. Engineering guide to performance-based fire protection. 2nd ed. Quincy: NFPA; 2007.
  • [2] Technical Committee ISO/TC. ISO 16733: fire safety engineering - selection of design fire scenarios and design fires. Technical Committee ISO/TC 92/SC 4. 2015.
  • [3] Fitzgerald RW. Building fire performance analysis. Chichester: John Wiley & Sons; 2004.
  • [4] Klote JH, Milke JA. Principles of smoke management. Atlanta: ASHRAE; 2002.
  • [5] Cheong MK, Spearpoint MJ, Fleischmann CM. Design fires for vehicles in road tunnels. In: Proceedings 7th international conference on performance-based codes and fire safety design methods; 2008. p. 229-40. Auckland, New Zealand.
  • [6] Carvel R. Design fires for tunnel water mist suppression systems. In: Proceedings 3rd international symposium on tunnel safety and security; 2008. p. 141-8. Stockholm, Sweden.
  • [7] Hansen R. Design fires in underground mines. Västerås, Sweden: Mälardalen University; 2010.
  • [8] Hansen R. Design of fire scenarios for Australian underground hard rock mines - Applying data from full-scale fire experiments. J Sustain Min 2019;18:163-73.
  • [9] Hansen R. Pre-incident planning of fires in underground hard rock mines: old and new risks. Aust J Emerg Manag 2021;36:68-74. https://doi.org/10.47389/36.4.68.
  • [10] Gamiy Y, Kostenko V, Zavialova O, Kostenko T, Zhurbynskyi D. Identifying sources of coal spontaneous heating in mine workings using aerogas control automatic systems. Mining of Mineral Deposits 2020;14:120-7. https://doi.org/10.33271/mining14.01.120.
  • [11] Kostenko V, Gamiy Y, Kostenko T, Tsvirkun S, Udovenko M. Dynamics of motion of gases from a source of spontaneous combustion of coal in mine workings. Rudarsko-Geolosko-Naftni Zb 2021;36:109-17. https://doi.org/10.17794/rgn.2021.2.10.
  • [12] Zavialova O, Kostenko V, Liashok N, Grygorian M, Kostenko T, Pokaliuk V. Theoretical basis for the formation of damaging factors during the coal aerosol explosion. Mining of Mineral Deposits 2021;15:130-8. https://doi.org/10.33271/mining15.04.130.
  • [13] NFPA NFPA. 101 (Life safety code). Quincy: NFPA; 2018.
  • [14] Hansen R, Ingason H. Full-scale fire experiments with mining vehicles in an underground mine. Västerås, Sweden: Mälardalen University; 2013.
  • [15] Hansen R. Mass flow during fire experiments in a model-scale mine drift with longitudinal ventilation. Trans Inst Min Metall Sect A 2020;129:68-81. https://doi.org/10.1080/25726668.2020.1766302.
  • [16] Hansen R. Site inventory of operational minese fire and smoke spread in underground mines. Västerås, Sweden: Mälardalen University; 2010.
  • [17] Hansen R. Fire statistics from the mining industry in New South Wales, Queensland Western Australia, 2018 and Western Australia. Brisbane: The University of Queensland; 2018.
  • [18] Hansen R. Investigation on fire causes and fire behaviour - vehicle fires in underground mines in Sweden 1988-2010. Västerås: Mälardalen University; 2013.
  • [19] Hansen R. Study of heat release rates of mining vehicles in underground hard rock mines. Västerås, Sweden: Mälardalen University; 2015.
  • [20] Hansen R. The influence of rough rock surface on the heat losses of fire gases in a mine drift. In: Proceedings of the 5th world congress on mechanical, chemical, and material engineering; 2019. Lisbon, Portugal.
  • [21] Hansen R. Design fire scenarios involving non-fire resistant conveyor belts - numerical study. International Journal of Mining, Materials, and Metallurgical Engineering 2021;7:1-15.
  • [22] Zalosh R, Gandhi P, Barowy A. Lithium-ion energy storage battery explosion incidents. J Loss Prev Process Ind 2021:72.
  • [23] Chen H, Buston JEH, Gill J, Howard D, Williams RCE, Rao Vendra CM, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate. J Power Sources 2020:472.
  • [24] Wachowicz J. Heat release rate in evaluation of conveyor belts in full-scale fire tests. Fire Mater 1997;21:253-7.
  • [25] Wachowicz J. Investigations of conveyor belts flammability. Comparison of flammability assessment using the large-scale gallery test and cone calorimeter. Fire Mater 1998;22:213-8.
  • [26] Chan T-S, Kung H-C, Yu H-Z, Brown WR. Experimental study of actual delivered density for rack-storage fires. In: Fire safety science - proceedings of the 4 th international symposium; 1994. p. 913-24. Ottawa, Canada.
  • [27] Litton CD, DeRosa M, Li J-S. Calculating fire-throttling of mine ventilation airflow. Report of investigations 9076. Bureau of Mines, United States Department of Interior; 1987.
  • [28] Lee CK, Chaiken RF, Singer JM. Interaction between duct fires and ventilation flow: an experimental study. Combust Sci Technol 1979;20:59-72. https://doi.org/10.1080/00102207908946897.
  • [29] Edwards JC, Franks RA, Friel GF, Yuan L. Experimental and modelling investigation of the effect of ventilation on smoke rollback in a mine entry. In: SME annual meeting. February 28 - March 2; 2005. p. 1-6. Salt Lake City, Utah.
  • [30] Hwang CC, Edwards JC. CFD modelling of smoke reversal. In: Proc international conference on engineered fire protection design. San Francisco, CA). Bethesda, MD: Society of Fire Protection Engineers, Inc.; 2001. p. 376-87.
  • [31] Edwards JC, Friel GF, Yuan L, Franks RA. Smoke reversal interaction with diagonal airway - its elusive character. Trans Soc Min Metall Explor 2006;320:149-56.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-942cca13-3665-4370-9402-80e01f90e519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.