PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy metal adsorption by dewatered iron-containing waste sludge

Autorzy
Identyfikatory
Warianty tytułu
PL
Adsorpcja metali ciężkich przez odwodniony osad ściekowy zawierający żelazo
Języki publikacji
EN
Abstrakty
EN
Drinking water treatment plants produce significant amounts of waste sludge. In this study, removal of Nickel ion by use of wastewater sludge was aimed. The adsorption capability of waste sludge was optimized with varying physical parameters such as pH, adsorbent dosage, adsorbate concentration, contact time, shaking speed and temperature. Initial concentration was set as 25 mg/dm3, absorbent dose was set as 0.3 g/cm3, and temperature was set as 25 °C. Compliance of balance data with Langmuir, Freundlich, Temkin and D-R isotherm models was investigated. The highest R 2 values were obtained with Freundlich isotherm (R 2 = 0.92-0.95). Adsorption kinetics was analysed using pseudo-first order, pseudo-second order, Weber and Morris intraparticle diffusion and Elovich kinetic models, and the system was found to be in a better compliance with pseudo-second order kinetic model. Iron sludge was used as sorbent, and accordingly total iron ion measurements were carried out to determine its possible effects on water. Additionally, SEM, EDX, FTIR spectroscopy, XRD spectrum and atomic force microscope (AFM) measurements were conducted to determine the interaction between the sorbent and metal ions, in addition to characterization of the sorbent. As indicated by research results, drinking water treatment sludge proved to be a potential adsorbent for removal of nickel(II) ions from the solution.
Rocznik
Strony
431--456
Opis fizyczny
Bibliogr. 85 poz., rys., wykr., tab., fot.
Twórcy
autor
  • Department of Environmental Engineering, Engineering Faculty, Cumhuriyet University, 58140, Sivas, Turkey, phone +90 3462191010
autor
  • Institute of Science, Cumhuriyet University, 58140, Sivas, Turkey
Bibliografia
  • [1] Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents. A review. Bioresour Technol. 2008;99:3935-3948. DOI: 10.1016/j.biortech.2007.06.011.
  • [2] Zadavıcıüte S, Baltakys K, Eısınas A. Adsorption kinetic parameters of Fe3+ and Ni2+ ions by gyrolite. Materıals Scı. (Medžıagotyra). 2015;21(1):117-122. DOI: 10.5755/j01.ms.21.1.5735.
  • [3] Kamiński K, Kamiński W, Mizerski T. Application of artificial neural networks to the technical condition assessment of water supply systems. Ecol Chem Eng S. 2017;24(1):31-40. DOI: 10.1515/eces-2017-0003.
  • [4] Blakemore R, Chandler R, Surrey T, Ogilvie D, Walmsley N. Management of Water Treatment Plant Residuals in New Zealand, first ed. Auckland: Water Supply Managers’ Group, New Zealand Water and Wastes Association; 1998; 56.
  • [5] Zhao YQ, Babatunde AO, Hu YS, Kumar JLG, Zhao XH. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011;46(1):278-283. DOI: 10.1016/j.procbio.2010.08.023.
  • [6] Vaebi F, Batebi F. Recovery of iron coagulants from tehran water-treatment-plant sludge for reusing in textile wastewater treatment. Iran J Public Health. 2001;30(3-4):135-138.
  • [7] Miroslav K. Opportunities for water treatment sludge reuse, J Geosci Eng. 2008;54(1):11-22.
  • [8] Pereira FR, Nunes AF, Segadaes AM, Labrincha JA. Refractory mortars made of different wastes and natural sub-products. Key Eng Mater. 2004;264-268:1743-1747. DOI: 10.4028/www.scientific.net/KEM.264-268.1743.
  • [9] Siswoyo E, Mihara Y, Tanaka S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl Clay Sci. 2014;97-98:146-152. DOI: 10.1016/j.clay.2014.05.024.
  • [10] Cherifi M, Hazourli S, Pontvianne S, Leclerc JP, Lapicque F. Electrokinetic removal of aluminum from water potabilization treatment sludge. Desalination. 2011;281(17):263-270. DOI: 10.1016/j.desal.2011.07.071.
  • [11] Hong GX, Hao CG, Chii S. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 2005;39(15):433-3440. DOI: 10.1016/j.watres.2004.07.033.
  • [12] Yang L, Wei J, Zhang YM, Wang JL, Wang DT. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater. Appl Surf Sci. 2014;305:337-346. DOI: 10.1016/j.apsusc.2014.03.081.
  • [13] Krishna KCB, Aryal A, Jansen T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J Environ Manage. 2016;180:17-23. DOI: 10.1016/j.jenvman.2016.05.006.
  • [14] Hasan H, Abdullah SRS, Kofli NT, Kamarudin SK. Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manage. 2012;30:34-43. DOI: 10.1016/j.jenvman.2012.06.027.
  • [15] Vinitnantharat S, Kositchaiyong S, Chiarakorn S. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge. Appl Surf Sci. 2010;256(17-15):5458-5462. DOI: 10.1016/j.apsusc.2009.12.140.
  • [16] Gibbons MK, Gagnon GA. Adsorption of arsenic from a Nova Scotia ground-water onto water treatment residual solids. Water Res. 2010;44:5740-5749. DOI: 10.1016/j.watres.2010.06.050.
  • [17] Kim YS, Kim DH, Yang JS, Baek K. Adsorption characteristics of As(III) and As(V) on alum sludge from water purification facilities. Sep Sci Technol. 2012;47:2211-2217. DOI: 10.1080/01496395.2012.700676.
  • [18] Irawan C, Liu JC, Wu CC. Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination. 2011;276:322-327. DOI: 10.1016/j.desal.2011.03.070.
  • [19] Yang L, Wei J, Liu Z, Wang J, Wang D. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater. Appl Surf Sci. 2015;330:228-236. DOI: 10.1016/j.apsusc.2015.01.017.
  • [20] Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Pollut. 2011;215:631-643. DOI: 10.1007/s11270-010-0505-y.
  • [21] Lai JY, Liu JC. Co-conditioning and dewatering of alum sludge and waste activated sludge. Water Sci Technol. 2004;50(9):41-48.
  • [22] Hegazy BE, Fouad HA, Hassanain AM. Incorporation of water sludge, silica fume, and rice husk ash in brick making. Adv Environ Res. 2012;1(1):83-96. DOI: 10.1.1.665.8293.
  • [23] Kizinievic O, Zurauskiene R, Kizinievic V, Zurauskas R. Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater. 2013;41:464-473. DOI: 10.1016/j.conbuildmat.2012.12.041.
  • [24] Dayton EA, Basta NT. Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ Res. 2001;73(1):52-57. DOI: 10.2175/106143001X138688.
  • [25] Rigby H, Pritchard D, Collins D, Walton K, Penney N. The use of alum sludge to improve cereal production on a nutrient-deficient soil. Environ Technol. 2013;34:1359-1368. DOI: 10.1080/09593330.2012.747037.
  • [26] Husillos Rodrguez N, Martnez-Ramrez S, Blanco-Varela MT, Guillem M, Puig J, Larrotcha E, et al. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem Concr Compos. 2011;33:267-275. DOI: 10.1016/j.cemconcomp.2010.10.020.
  • [27] Kayranlı B. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem Eng J. 2011;173:782-791. DOI: doi.org/10.1016/j.cej.2011.08.051.
  • [28] Macek-Kamińska K, Stemplewski S. Application of neural networks in diagnostics of chemical compounds based on their infrared spectra. Ecol Chem Eng S. 2017;24(1):107-118. DOI: 10.1515/eces-2017-0008.
  • [29] Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol. 2008;42(14):5137-5143. DOI: 10.1021/es8002684.
  • [30] Ardejani FD, Badii K, Yousefi Limaee N, Shafaei SZ, Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.
  • [31] Agrawal A, Sahu KK, Pandey BD. Removal of zinc from aqueous solutions using sea nodule residue. Colloids Surf A: Phys Eng Aspects. 2004;237(1-3):133-140. DOI: 10.1016/j.colsurfa.2004.01.034.
  • [32] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.
  • [33] Yıldız S. Artificial Neural Network (ANN) methods for modeling of Zn(II) adsorption in batch process. Korean J Chem Eng. 2017;34(9):2423-2434. DOI: 10.1007/s11814-017-0157-3.
  • [34] Munagapati VS, Kim DS. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Eco Environ Saf. 2017;141:226-234. DOI: 10.1016/j.ecoenv.2017.03.036.
  • [35] Anitha T, Senthil Kumar P, Sathish Kumar K, Sriram K, Feroze Ahmed J. Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies. Desalin Water Treat. 2016;57:13711-13721. DOI: 10.1080/19443994.2015.1061951.
  • [36] Gautama SB, Vaishyab RC, Devnania GL, Mathurc AK. Adsorption of As(III) from aqueous solutions by iron-impregnated quartz, lignite, and silica sand: kinetic study and equilibrium isotherm analysis. Desalin Water Treat. 2014;52:3178-3190. DOI: 10.1080/19443994.2013.797182.
  • [37] Yang S, Li J, Lu Y, Chen Y, Wang X. Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot. 2009;67:1600-1608. DOI: 10.1016/j.apradiso.2009.03.118
  • [38] Liu ZR, Zhou SQ. Adsorption of copper and nickel on Na-bentonite. Process Saf Environ Prot. 2010;88:62-66.
  • [39] Song X, Wang S, Chen L, Zhang M, Dong Y. Effect of pH, ionic strength and temperature on the sorption of radionickel on Na-montmorillonite. Appl Radiat Isot. 2009;67:1007-1012. DOI: 10.1016/j.apradiso.2009.02.085.
  • [40] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.
  • [41] Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.
  • [42] Paul ML, Samuel J, Chandrasekaran N, Mukherjee A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J. 2012;187:104-113. DOI: 10.1016/j.cej.2012.01.106.
  • [43] Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J Molecular Liquids. 2016;224:832-841. DOI: 10.1016/j.molliq.2016.10.059.
  • [44] Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A. Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: Isotherm, kinetic and thermodynamic studies. Chem Eng J. 2012;195-196:297-306. DOI: 10.1016/j.cej.2012.04.074.
  • [45] Saini AS, Melo JS. Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresour Technol. 2013;149:155-162. DOI: 10.1016/j.biortech.2013.09.034.
  • [46] Zhiwei N, Qiaohui F, Wenhua W, Junzheng X, Lei C, Wangsuo W. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot. 2009;67: 1582-1590. DOI: 10.1016/j.apradiso.2009.03.113.
  • [47] Argun ME, Dursun Ş, Özdemir C, Karataş M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J Hazard Mater. 2007;141(1):77-85. DOI: 10.1016/j.jhazmat.2006.06.095
  • [48] Lagergren S. About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Handl. 1898:24, 16.
  • [49] Ho YS, McKay G. Pseudo-second-order model for sorption processes. Process Biochem. 1999;34:451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • [50] Ilyas M, Khan N, Sultana Q. Thermodynamic and kinetic studies of chromium(VI) adsorption by sawdust activated carbon. J Chem Soc Pak. 2014;36(6):1003-1012.
  • [51] Namasivayam C, Kavitha D. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon. J Hazard Mater. 2003;98:257-274. DOI: 10.1016/S0304-3894(03)00006-2.
  • [52] Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, et al. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.
  • [53] Namasivayam C, Sureshkumar MV. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol. 2008;99(7):2218-2225. DOI: 10.1016/j.biortech.2007.05.023.
  • [54] Ijagbemi CO, Baek MH, Kim DS. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater. 2010;174:746-755. DOI: 10.1016/j.jhazmat.2009.09.115.
  • [55] Katsou E, Malamis S, Haralambous KJ, Loizidou M. Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater. J Membr Sci. 2010;360:234-249. DOI: 10.1016/j.memsci.2010.05.020.
  • [56] Zou W, Han R, Chen Z. Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surf. A: Physicochem Eng Asp. 2006;279:238-246. DOI: 10.1016/j.colsurfa.2006.01.008.
  • [57] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.
  • [58] Wierzba S, Rajfur M, Nabrdalik M, Klos A. The application of electroanalytical methods to determine affinity series of metal cations for functional biosorbent groups. J Elect Chem. 2018;809:8-13. DOI: 10.1016/j.jelechem.2017.12.037.
  • [59] Keane MA. The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Colloids Surf. A: Physicochem Eng Asp. 1998;138:11-20. DOI: 10.1016/S0927-7757(97)00078-2.
  • [60] Inglezakis VJ, Zorpas AA, Loizidou MD, Grigoropoulou HP. The effect of competitive cations and anions on ion exchange of heavy metals. Sep Purif Technol. 2005;46:202-207. DOI: 10.1016/j.seppur.2005.05.008.
  • [61] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.
  • [62] Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186(1):458-465. DOI: 10.1016/j.jhazmat.2010.11.029.
  • [63] Mckay G, Blair HS, Gardner JR. Adsorption of dyes on chitin. I. Equilibrium studies. J App Polymer Sci. 1982;27(8):3043-3057. DOI: 10.1002/app.1982.070270827.
  • [64] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.
  • [65] Yang CH. Statistical mechanical study on the Freundlich isotherm equation. J Colloid Inter Sci. 1998;208:379-387. DOI: 10.1006/jcis.1998.5843.
  • [66] Ali RM, Hamad HA, Hussein MM, Malash GH. Potential of using green adsorbent of heavy metal removal fromaqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.
  • [67] Ostroski IC, Barros MASD, Silva EA, Dantas JH, Arroyo PA, Lima OCMA. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. J Hazard Mater. 2009;161:1404-1412. DOI: 10.1016/j.jhazmat.2008.04.111.
  • [68] Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Inter Sci. 2006;304:21-28. DOI: 10.1016/j.jcis.2006.07.068.
  • [69] Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;61:229-242. DOI: 10.1016/j.seppur.2007.10.002.
  • [70] Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. App Radiat Isot. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.
  • [71] Onyang MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Inter Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.
  • [72] Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater. 2009;162:616-645. DOI: 10.1016/j.jhazmat.2008.06.042.
  • [73] Winzor DJ, Jackson CM. Interpretation of the temperature dependence of equilibrium and rate constants. J Molec Recog. 2006;19(5):389-407. DOI: 10.1002/jmr.799.
  • [74] Anastasia V, Penkova SFA, Acquah MP, Sokolova ME, Dmitrenko AMT. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C60(OH)12. J Membrane Sci. 2015;491:22-27. DOI: 10.1016/j.memsci.2015.05.011.
  • [75] Ai T, Jiang XJ, Yu HM, Xu HB, Pan DW, Liu QY. Equilibrium, kinetic and mechanism studies on the biosorption of Cu2+ and Ni2+ by sulfur-modified bamboo powder. Korean J Chem Eng. 2015;32:342-349.
  • [76] Gupta SS, Bhattacharyya KG. Adsorption of Ni(II) on clays. J Colloid Inter Sci. 2006;295:21-32. DOI: 10.1016/j.jcis.2005.07.073.
  • [77] Moreno-Piraján JC, Garcia-Cuello VS, Giraldo L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption. 2011;17:505-514. DOI: 10.1007/s10450-010-9311-5.
  • [78] Osman HE, Badwy RK, Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62.
  • [79] Rozaini CA, Jain K, Oo CW, Tan KW, Tan LS, Azraa A, et al. Optimization of nickel and copper ions removal by modified mangrove barks. Int J Chem Eng Appl. 2010;1(1):84-89.
  • [80] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.
  • [81] Álvarez-Ayuso E, García-Sánchez A, Querol X. Purification of metal electroplating waste waters using zeolites. Water Res. 2003;37:4855-4862. DOI: 10.1016/j.watres.2003.08.009.
  • [82] Bhattacharyya KG, Gupta SS. Uptake of Ni(II) ions from aqueous solution by kaolinite and montmorillonite: influence of acid activation of the clays. Sep Sci Technol. 2008;43:3221-3250. DOI: 10.1080/01496390802219638.
  • [83] Bhattacharyya KG, Gupta SS. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J. 2008;136:1-13. DOI: 10.1016/j.cej.2007.03.005.
  • [84] Blais JF, Shen S, Meunier N, Tyagi R.D. Comparison of natural adsorbents for metal removal from acidic effluent. Environ Technol. 2003;24:205-215. DOI: 10.1080/09593330309385552.
  • [85] Hui KS, Chao CYH, Kot SC. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater. 2005;127:89-101. DOI: 10.1016/j.jhazmat.2005.06.027.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-942b847b-6d49-4b19-9c88-dcc918fe7fb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.