PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioactive hydroxyapatite ceramics as scaffolds for bone tissue engineering – a preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Strony
13--16
Opis fizyczny
Bibliogr. 9 poz., tab., zdj.
Twórcy
autor
  • Department of Growth and Differentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 Krc, Czech Republic
  • Department of Glass and Ceramics, Institute of Chemical Technology in Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic
autor
  • Department of Glass and Ceramics, Institute of Chemical Technology in Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic
autor
  • Department of Glass and Ceramics, Institute of Chemical Technology in Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic
autor
  • Department of Glass and Ceramics, Institute of Chemical Technology in Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic
autor
  • Department of Growth and Differentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 Krc, Czech Republic
autor
  • Department of Growth and Differentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 Krc, Czech Republic
Bibliografia
  • [1] Langer R, Vacanti J.P.: Tissue engineering. Science 260: 920-926, 1993.
  • [2] Pamula E., Bačáková L., Filová E., Buczynska J., Dobrzynski P., Nosková L., Grausová L.: The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci Mater Med 19: 425-435, 2008.
  • [3] Pamula E., Filová E., Bačáková L., Lisá V., Adamczyk D.: Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J Biomed Mater Res A, 89A: 432-443, 2009.
  • [4] Yamasaki N., Hirao M., Nanno K., Sugiyasu K., Tamai N., Hashimoto N., Yoshikawa H., Myoui A.: A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater 91: 788-798, 2009.
  • [5] Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26: 5474-5491, 2005.
  • [6] Liu C.P., Jan C.R.: Effect of carvedilol on Ca2+ movement and cytotoxicity in human MG63 osteosarcoma cells. Basic Clin Pharmacol Toxicol 95(2): 59-65, 2004.
  • [7] Motskin M., Wright D.M., Muller K., Kyle N., Gard T.G., Porter A.E., Skepper J.N.: Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30: 3307-3317, 2009.
  • [8] Kilpadi K.L., Chang P.L., Bellis S.L.: Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 57: 258-267, 2001
  • [9] Dolatshahi-Pirouz A., Jensen T.H., Kolind K., Bünger C., Kassem M., Foss M., Besenbacher F.: Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces. Colloids Surf B Biointerfaces 84: 18-25, 2011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9429a819-aab0-4f63-8766-1db04dce176b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.