PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary Tests of Cellular SiC/Iron Alloy Composite Produced by a Pressureless Infiltration Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Preliminary tests aimed at obtaining a cellular SiC/iron alloy composite with a spatial structure of mutually intersecting skeletons, using a porous ceramic preform have been conducted. The possibility of obtaining such a composite joint using a SiC material with an oxynitride bonding and grey cast iron with flake graphite has been confirmed. Porous ceramic preforms were made by pouring the gelling ceramic suspension over a foamed polymer base which was next fired. The obtained samples of materials were subjected to macroscopic and microscopic observations as well as investigations into the chemical composition in microareas. It was found that the minimum width of a channel in the preform, which in the case of pressureless infiltration enables molten cast iron penetration, ranges from 0.10 to 0.17 mm. It was also found that the ceramic material applied was characterized by good metal wettability. The ceramics/metal contact area always has a transition zone (when the channel width is big enough), where mixing of the components of both composite elements takes place.
Rocznik
Strony
115--120
Opis fizyczny
Bibliogr. 22 poz., il., tab., wykr.
Twórcy
autor
  • Institute of Ceramics and Building Materials Refractory Materials Division, Toszecka 99, 44-100 Gliwice, Poland
autor
  • Institute of Ceramics and Building Materials Refractory Materials Division, Toszecka 99, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland
Bibliografia
  • [1] Rosso, M. (2006). Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology. 175. 364-375. DOI: 10.1016/j.jmatprotec. 2005.04.038.
  • [2] Ibrahim, I.A., Mohamed, F.A. & Lavernia E.J. (1991). Particulate reinforced metal matrix composites - a review. Journal of Materials Science. 26, 1137-1156. DOI: 10.1007/BF00544448.
  • [3] Raether, F. (2013). Ceramic matrix composites – an alternative for challenging construction tasks. Ceramic Applications. 1(1), 45-49.
  • [4] Clarke, D.R. (1992). Interpenetrating Phase Composites. Journal of the American Ceramic Society. 75(4), 739-759. DOI: 10.1111/j.1151-2916.1992.tb04138.x.
  • [5] Binner, J., Chang, H. & Higginson, R. (2009). Processing of ceramic-metal interpenetrating composites. Journal of the European Ceramic Society. 29(5), 837-842. DOI: 10.1016/j.jeurceramsoc.2008.07.034.
  • [6] Szafran, M., Rokicki, G., Lipiec, W., Konopka, K. & Kurzydłowski, K. (2002). Porous ceramic infiltrated by metals and polymers. Kompozyty. 2(5), 313-317. (in Polish).
  • [7] Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. & Hoffmann, M.J. (2004). Preparation of interpenetrating ceramic–metal composites. Journal of the European Ceramic Society. 24, 3399-3408. DOI: 10.1016/j.jeurceramsoc.2003.10.030.
  • [8] Shouren, W., Haoran, G., Jingchun, Z. & Yingzi, W. (2006). Interpenetrating microstructure and properties of Si3N4/Al-Mg composites fabricated by pressureless infiltration. Applied Composite Materials. 13(2), 115-126. DOI: 10.1007/s10443-006-9015-x.
  • [9] Konopka, K. & Szafran, M. (2006). Fabrication of Al2O3-Al composites by infiltration method and their characteristic. Journal of Materials Processing Technology. 175, 266-270. DOI: 10.1016/j.jmatprotec.2005.04.046.
  • [10] Rödel, J. (2002). Mechanical properties of metal-ceramic composites: Model microstructures, macroscopically homogenous and graded material. Anales de Macánica del la Fractura. 19, 13-22.
  • [11] Olejniczak, J., Wiśniewski, P., Ciupiński, Ł., Tarnowski, M., Grabian, J. & Mizera, J. (2012). The investigations on obtaining aluminium-silicon carbide composites. In Conference: XL Szkoła Inżynierii Materiałowej, 24-27 September 2012. Krakow, Poland: AGH University of Science and Technology. DOI: 10.13140/RG.2.1.3196.1368. (in Polish).
  • [12] Lemster, K., Delporte, M., Graule, T. & Kuebler, J. (2007). Activation of alumina foams for fabricating MMCs by pressureless infiltration. Ceramics International. 33, 1179-1185. DOI: 10.1016/j.ceramint.2006.04.002.
  • [13] Chang, H., Higginson, R. & Binner, J. (2010). Microstructure and property characterisation of 3-3 Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique. Journal of Materials Science, 45(3), 662-668. DOI: 10.1007/s10853-009-3983-9.
  • [14] Potoczek, M., Myalski, J., Śleziona, J. & Śliwa, R.E. (2009). Gelcasting of alumina foams as preforms for metal infiltration. Inżynieria Materiałowa. 30(6), 536-539. (in Polish).
  • [15] Lange, F.F., Velamakanni, B.V. & Evans, A.G. (1990). Method for processing metal-reinforced ceramic composites. Journal of the American Ceramic Society. 73(2), 388-393. DOI: 10.1111/j.1151-2916.1990.tb06523.x.
  • [16] Nogi, K. (2010). The role of wettability in metal-ceramic joining. Scripta Materialia. 62, 945-948. DOI: 10.1016/j.scriptamat.2010.03.007.
  • [17] Krauß, G., Kübler, J. & Trentini, E. (2002). Preparation and properties of pressureless infiltrated SiC and AlN particulate reinforced metal ceramic composites based on bronze and iron alloys. Materials Science and Engineering A. 337(1), 315-322. DOI: 10.1016/S0921-5093(02)00044-8.
  • [18] Hashim, J., Looney, L. & Hashmi, M.S.J. (1999). Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology. 92-93, 1-7. DOI: 10.1016/S0924-0136(99)00118-1.
  • [19] Gawroński, J., Cholewa, M. & Szajnar, J. (1994). Aluminium – SiC ceramic particles composites. The technology of shape composites production. WIT Transactions on Engineering Sciences. 4, 321-328. www.witpress.com. ISSN 1743-3533.
  • [20] Cholewa, M., Gawroński, J. (1988). PL 157721. Urząd Patentowy Rzeczypospolitej Polskiej.
  • [21] Sobczak, J. & Wojciechowski, S. (2002). The current trends in the practical application of metal matrix composites. Kompozyty. 2, 24-37. (in Polish).
  • [22] Myalski, J. & Hekner, B. (2015). Aluminium matrix composites reinforced by ceramic foams. Inżynieria Materiałowa. 36, 5, 220-223. DOI: 10.15199/28.2015.5.3. (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94271f0d-d0ea-4f6a-9050-e0b143054f9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.