Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Humic substances are a natural admixture of surface water and determine the level of organic pollution of water and colour intensity. Application of coagulation process in surface water treatment allows for decrease turbidity and colour of water, as well as organic matter content. In Poland most drinking water treatment plants use aluminium sulphate as a coagulant. Research works on pre-hydrolyzed coagulants, e.g. polyaluminium chlorides (general formula Aln(OH)mCl3n-m) are also carried out. The aim of this study was to evaluate the effectiveness of the coagulation process using polyaluminium chlorides with different basicity, in reducing the level of pollution of surface water with organic substances. Apart from the typical indicators used to evaluate the content of organic compounds, the potential for trihalomethanes formation THM-FP was also determined. The influence of the type of coagulant (low, medium, highly alkaline) on the efficiency of organic compound removal, determined as total organic carbon TOC, oxidisability OXI, absorbance UV254, was stated. Under the conditions of the coagulation (pH 7.2–7.4, temperature of 19–21°C), the best results were obtained using highly alkaline polyaluminium chlorides PAX-XL19F, PAX-XL1905 and PAX-XL1910S, decrease in TOC and OXI by 43–46%, slightly worse – 40–41% using low alkaline PAX18. Using the medium alkaline coagulants PAX-XL61 and PAXX-XL69, 30–35% removal of organic matter was obtained. Despite various effects of dissolved organic carbon removal, depending on the used coagulant, THM-FP in purified water did not differ significantly and ranged from 10.0 to 10.9 mgCHCl3 m-3. It was by 37–42% lower than in surface water.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
66--72
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
autor
- Department of Chemistry, Water and Wastewater Technology, Czestochowa University of Technology, Dąbrowskiego 69, 42-200 Częstochowa, Poland
Bibliografia
- 1. Abdullah Md.P., Yew C.H., Salleh bin Ramli M. 2003. Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia. Water Research, 37, 4637–4644.
- 2. APHA 1998. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington, DC.
- 3. Alexander J.T., Hai F.I., Al-aboud T.M. 2012. Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential. Journal of Environmental Management, 111, 195–207.
- 4. Chang H.H, Tung H.H., Chao C.C., Wang G.S. 2010. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environmental Monitoring and Assessment 162, 237–250.
- 5. Dąbrowska L., Rosińska A. 2013. Removal of PCBs and heavy metal ions from surface water by coagulation. Rocznik Ochrona Środowiska, 15, 1228–1242.
- 6. Dojlido J. (red) 2002. Uboczne produkty dezynfekcji wody. Seria Wodociągi i Kanalizacja nr 9. Wyd. ZG PZIiTŚ, Warszawa.
- 7. Gumińska J. 2012. Analysis of the possibility to assess the prehydrolyzed coagulants based on their basicity. Przemysł Chemiczny, 91 (12), 2351–2354.
- 8. Hong H.C., Liang Y., Han B.P, Mazumder A., Wong M.H. 2007. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong’s drinking water). Science of the Total Environment, 385, 48–54.
- 9. Hussain S., van Leeuwen J., Chow Ch., Beecham S., Kamruzzaman M., Wang D., Drikas M., Aryal R. 2013. Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: Coagulation adsorption and kinetics studies. Chemical Engineering Journal, 225, 394–405.
- 10. Jeong S., Sathasivan A., Kastl G., Shim W.G., Vigneswaran S. 2014. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater. Chemosphere, 95, 310–316.
- 11. Kim J. 2009. Fate of THMs and HAAs in low TOC surface water. Environmental Research, 109, 158–165.
- 12. Lee J., Ha K-T., Zoh K-D. 2009. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Science of the Total Environment, 407, 1990–1997
- 13. Lin Jr-L., Huang Ch., Pan J.R., Wang D. 2008. Effect of Al(III) speciation on coagulation of highly turbid water. Chemosphere, 72, 189–196.
- 14. Lin Jr_L., Ch. Huang, Chin Ch-J., Pan J.R. 2009. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PACl coagulation. Water Research, 43, 4285–4295.
- 15. Lin Jr-L , Huang Ch., Dempsey B., Hu J-Y. 2014. Fate of hydrolyzed Al species in humic acid coagulation. Water Research, 56, 314–324.
- 16. Matilainen A., Vepsäläinen M., Sillanpää M. 2010. Natural organic matter removal by coagulation during water treatment: A review. Advances in Colloid and Interface Science, 159, 189v197.
- 17. Mołczan M., Szlachta M., Karpińska A., Biłyk A. 2006. Water quality assessment in term sof specific UV absorbance. Ochrona Środowiska 28 (4), 11–16.
- 18. Pardakhti A.R., Bidhendi G.R.N., Torabian A., Karbassi A., Yunesian M. 2011. Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources. Environmental Monitoring and Assessment, 179, 499–507.
- 19. Platikanov S., Martín J., Tauler R. 2012. Linear and non-linear chemometric modeling of THM formation in Barcelona’s water treatment plant. Science of the Total Environment, 432, 365–374.
- 20. Rak M., Świderska-Bróż M. 2003. On the usefulness of prehydrolysed coagulant to organic matter removal from water. Inżynieria i Ochrona Środowiska, 6 (3-4), 347–359.
- 21. Regulation 2015. Regulation of the Minister of Health from 13 November 2015 on the quality of water intended for human consumption (Rozporządzenie Ministra Zdrowia z dnia 13 listopada 2015 roku w sprawie jakości wody przeznaczonej do spożycia przez ludzi. Poz. 1989).
- 22. Świderska-Bróż M., Rak M., Mołczan M., Biłyk A. 2008. Effect of the basicity of aluminium coagulants and the pH of the water on the removal of organic pollutants. Ochrona Środowiska, 30 (4), 29–33.
- 23. Szlachta M., Adamski W. 2008. Assessing the efficiency of natural organic matter (NOM) removal from water by coagulation. Ochrona Środowiska, 30 (3), 9–13.
- 24. Wang D., Zhao Y., Xie J., Chow Ch.W.K., van Leeuwen J. 2013. Characterizing DOM and removal by enhanced coagulation: A survey with typical Chinese source waters. Separation and Purification Technology, 110, 188–195.
- 25. Yan M., Wang, D. Ni J., Qu J., Chow Ch.W.K., Liu H. 2008. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics. Water Research, 42, 3361–3370.
- 26. Yang Z., Gao B., Wang Y., Wang Q., Yue Q. 2011a. Aluminum fractions in surface water from reservoirs by coagulation treatment with polyaluminum chloride (PAC): Influence of initial pH and OH-/Al3+ ratio. Chemical Engineering Journal, 170, 107–113.
- 27. Yang Z., Gao B., Cao B., Xu W., Yue Q. 2011b. Effect of OH-/Al3+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment. Separation and Purification Technology, 80, 59–66.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-941cc1ae-fee9-4c42-b52f-224d4ade4309