PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nowoczesne techniki i technologie inżynierii środowiska

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Novel Methods and Technologies in Environmental Engineering
Języki publikacji
PL
Abstrakty
EN
The novel technologies used in environmental engineering were discussed in this paper – the formation of aerobic granules, the Anammox process, the advanced oxidation processes, the use of fungi for dyes decolorization, constructed wetlands, the soil phytoremediation supported by rhizosphere microorganisms and the use of molecular biology technique in environmental engineering. The structure of granular sludge is influenced by EPS production. The average diameter and density of biogranules increase due to EPS production. Although polysaccharides are essential, proteins were found to be the predominant component of aerobic granular sludge. Compared to loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS) showed more significant correlations with granules formation. This investigation will contribute towards a better understanding of the behavior and composition of EPS in sequencing batch reactors. The traditional nitrification and denitrification processes proceed well with typical municipal wastewater. Nevertheless, there are also nitrogen-rich wastewater streams like landfill leachate or reject waters from dewatering of digested sludge, for which traditional nitrification/denitrification can be generally ineffective due to free ammonia inhibition of nitrification and unfavorable biodegradable carbon content for denitrification. Because of high requirements for oxygen and the necessity for addition of external carbon source, treating such nitrogen-rich streams with nitrification/denitrification would become expensive and unsustainable. The least resources consuming pathway for the conversion of ammonium to nitrogen gas is a combination of partial nitrification and the Anammox process. The main advantages of this process compared to the conventional nitrification/denitrification are: low sludge production, decrease of the aeration costs by almost 60% (only half of the ammonia is oxidized to nitrite in the nitritation process without further oxidation to nitrate), and no need for external organic carbon source addition (Anammox process). Furthermore, anammox bacteria oxidize ammonium under anoxic conditions with nitrite as the electron acceptor, and converse energy for CO2 fixation. Additionally, the biomass yield of the Anammox process is very low (0.08 kg VSS kg NH4-N-1 in comparison to 1 kg VSS kg NH4-N-1 in conventional nitrification/denitrification process) consequently, little sludge is produced. The low sludge production is another factor that contributes to the substantially lower operation costs compared to conventional denitrification systems. Advanced oxidation processes (AOPs) are oxidative methods which are based on the generation of the hydroxyl radicals, which are very reactive and less selective than other oxidants. In the wastewater treatment technology, AOPs can be used in a combination with conventional biological techniques (so called hybrid processes), as pre- and post- treatment processes. The advanced oxidation processes have been used in order to increase the biodegradability and also detoxification of the wastewater. The ability of fungi to degrade lignin-cellulose debris is well known. In addition to these natural molecules they may also degrade synthetic compounds, including synthetic dyes. High effectiveness of Evans blue and brilliant green mixture removal by all tested strains was demonstrated. The process was the most effective and fast in shaken conditions. Finally strain MB removed 90% of tested mixture in shaken samples after 96h. It was the best result reached among all the strains used in the experiment. High removal efficiency was accompanied by a decrease of toxicity (from V class to III class in test with D. magna and from IV class even to non-toxic in test with L. minor). The highest decrease of phytotoxicity was noticed in samples with shaken biomass in which the effect of dyes mixture elimination was the best. The research indicates very high potential of tested strains for decolorization and detoxification of dyes mixture. Constructed wetlands are man-made system mimicking the process occurring in natural wetlands. These systems are considered to be an alternative to more technically advanced waste water treatment technologies. The development of constructed wetlands is envisaged to pursue the following directions grouped according to: the type of the waste water to be treated, target contaminants, treatment intensification methods, ancillary benefits and the locality. Mycorrhiza fungi can be used for phytoremediation proccess. They support plant growth by lowering the stress caused by the lack of phosphorus and water. They produce enzymes participating in several stages of xenobiotics decomposition, which is helpful in their further biodegradation performed by the other rhisospherical organisms. The natural colonisation of PAHs contaminated soil is a long-term process. It could be shortend by adding fungal propagules as an inoculum to the soil. Fungi used for the injections should be isolated from PAHs contaminated soil. That guarantees their survival and development in the contaminated environment. The level of PAHs elimination from soil depends on a type of bioremediation modification used. It was shown that the best results are obtained with monocotylous plants combined with bacterial and fungal biopreparations obtained from contaminated soil. The symbiosis of mycorrhiza fungi with monocotylous plants caused ca. 40% increase of 3, 4, 5 and 30% of 6-ring hydrocarbons removal from soil in comparison with the conventional methods. Important aspect of environmental protection and engineering is the possibility for qualitative and quantitative monitoring of complex microbial communities, responsible for biotechnological processes, such as: soil bioremediation, wastewater treatment or composting. Due to the fact that most of the environmental bacteria cannot be grown in the laboratory conditions molecular techniques are widely used in environmental engineering. Among these methods the Polymerase Chain Reaction (PCR)-based and hybridization-based (such as Fluorescent in situ Hybridization; FISH) techniques are known to be the most useful.
Rocznik
Strony
833--857
Opis fizyczny
Bibliogr. 77 poz., tab., rys.
Twórcy
autor
  • Politechnika Śląska, Gliwice
autor
  • Politechnika Śląska, Gliwice
autor
  • Politechnika Śląska, Gliwice
autor
  • Politechnika Śląska, Gliwice
Bibliografia
  • 1. Broda E.: Two kinds of lithotrophs missing in nature. Zeitschrift für allgemeine Mikrobiologie. 17 (6), 491–493 (1977).
  • 2. Cema G., Płaza E., Trela J., Surmacz-Górska J.: Dissolved oxygen as a factor influencing nitrogen removal rates in one-stage system with partial nitritation and Anammox process. Water Science and Technology. 64(5), 1009–1015 (2011).
  • 3. Cema G., Schneider Y., Beier M., Rosenwinkel K-H.: Influence of Free Ammonia and Free Nitrous Acid on Anammox Activity. In proceeding of: WEF/ IWA Nutrient Removal and Recovery 2013: Trends in Resources Recovery and Use, Vancouver, Kanada 2013.
  • 4. Cema G., Wiszniowski J., Żabczyński S., Zabłocka-Godlewska E., Raszka A., Surmacz-Górska J.: Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in rotating biological contactor (RBC). Water Science and Technology. 55(8–9), 35–42 (2007).
  • 5. Cema, G., Szatkowska, B., Plaza, E., Trela, J., Surmacz-Górska, J.: Nitrogen removal rates at a technical-scale pilot plant with the one-stage partial nitritation/Anammox process. Water Science and Technology. 54(8), 209–217 (2006).
  • 6. Dapena-Mora A., Fernandez I., Campos J.L., Mosquera-Corral A.: Méndez R, Jetten M.S.M. Evaluation of Activity and Inhibition effects on Anammox process by batch tests based on nitrogen gas production. Enzyme and Microbial Technology. 40(4), 859–865 (2007).
  • 7. De Clippeleir H., Yan X., Verstraete W., Vlaeminck S.E.: OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence time. Proceedings of the IWA/WEF Nutrient Recovery and Management, 9–12 January 2011, Miami, Florida. 1264–1274 (2011).
  • 8. Dionisi H. M., Harms G., Layton A.C., Gregory I. R., Parker J., Hawkins S.A., Robinson K. G., Sayler G. S.: Power Analysis for Real-Time PCR Quantification of Genes in Activated Sludge and Analysis of the Variability Introduced by DNA Extraction. Applied and Environmental Microbiology. 69, 11, 6597–6604 (2003).
  • 9. Dordio A. V., Carvalho A. J. P.: Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Hazardous Materials. 252, 272–292 (2013).
  • 10. Dos Santos A., Cervantes F.J., van Lier J.B.: Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology. 98, 2369–2385 (2007).
  • 11. Dudziak M.: Badania skuteczności usuwania mykoestrogenów z roztworów wodnych w zintegrowanym procesie sorpcja-rozkład fotokatalitycznynanofiltracja. Rocznik Ochrona Środowiska (Annual Set the Environment Protection) 15, 1929–1936 (2013).
  • 12. Egli K., Fanger U., Alvarez P.J.J., Siegrist H., van der Meer J.R.,Zehnder A.J.B.: Enrichment and characterisation of an anammox bacterium from rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology. 175, 198–207 (2001).
  • 13. Esplugas S., Gimenez J., Contreras S., Pascual E., Rodrigez M.:Comparison of different advanced oxidation processes for phenol degradation. Water Research. 36, 1034–1042 (2002).
  • 14. Felis E., Alder A.C., Surmacz-Gorska J., Miksch K.: Advanced oxidation of the polycyclic musk fragrances with using UV and UV/H2O2 processes.Archives of Environmental Protection. 34, 13–23 (2008).
  • 15. Felis E., Marciocha D., Surmacz-Górska J., Miksch K.: Photochemical degradation of naproxen in the aquatic environment. Wat. Sci. Tech. 55(12), 281–286 (2007).
  • 16. Felis E., Miksch K.: Nonylphenols degradation in the UV, UV/H2O2, O3 and UV/O3 processes – comparison of the methods and kinetic study.Water Science and Technology. 71(3), 446–453 (2015).
  • 17. Felis E., Miksch K.: Removal of analgesic drugs from the aquatic environment using photochemical methods. Water Science and Technology. 60, 2253–2259 (2009).
  • 18. Fu Y., Viraraghavan T.: Fungal decolorization of dye wastewater: a review. Bioresource Technology. 79, 251–262 (2001).
  • 19. HeijnenJ.J., van Loosdrecht M. C. M. , Mulder A and Tijhuis L.: Formation of Biofilms in a Biofilm Air-Lift Suspension Reactor. Water Science & Technology. 26(3–4), 647–654 (1992).
  • 20. Henry S., Baudoin E., López-Gutiérrez J., C., Martin-Laurent F., Brauman A., Philippot L.: Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal of Microbiological Methods. 59, 3, 327–335 (2004).
  • 21. Jaroszynski, L., Cicek, N., Sparling, R., Oleszkiewicz, J:. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere. 88(2), 188–195 (2012).
  • 22. Jeanningros Y., Vlaeminck S.E., Kaldate A., Verstraete W.: Fast start-up of a pilot-scale deammonification sequencing batch reactor form activated sludge inoculum. Water Science and Technology. 61(6), 1393–1400 (2010).
  • 23. Katsanis S.H., Katsanis N.: Molecular genetic testing and the future of clinical genomics. Nature Reviews Genetics. 14, 415–426 (2013).
  • 24. Klavarioti M., Mantzavinos D., Kassinos D.: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environmental International. 35, 402–417 (2009).
  • 25. Kończak B., Fernandez I., Miksch K.: Evolución de los polímeros extracelulares de gránulos aerobios durante su formación en el reactor SBR. Konfer. Proc.” 1st IWA National Young Water Professional Conference”, 16–18.06.2010, Barcelona 2010.
  • 26. Kończak B., Karcz J., Miksch K.: Influence of calcium, magnesium and iron ions on aerobic granulation. Applied Biochemistry and Biotechnology. 174, 2910–2918 (2014).
  • 27. Ledakowicz S., Solecka M., Zylla R.: Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology. 89, 175–184 (2001).
  • 28. Legrini O.: Commercial scale advanced oxidation processes for TOC removal. Programme and Executive Summaries of 6th IWA Specialist Conference on Oxidation Technologies for Water and Wastewater Treatment. Goslar, Germany, 7–9 May 2012.
  • 29. Li X-F., Li Y-J., Hua Z-Z., Du G-C. and Chen J.: Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor. Sep. Purif. Technol. 59, 26–33 (2008).
  • 30. Liu W., Chao Y., Yang X., Bao H., Qian S.: Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. Journal of Industrial Microbiology and Biotechnology. 31, 127–132 (2004).
  • 31. Liu Y-Q., Moy B., Kong Y-H., Tay, J-H.: Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme and Microbial Technology. 46(6), 520–525 (2010).
  • 32. Lovell S. T., Johnston D. M.: Designing landscapes for performance based on emerging principles in landscape ecology. Ecology and Society. 14(1), 44 (2009).
  • 33. Lowry G.V., Espinasse B.P., Badireddy A.R., Richardson C.J., Reinsch B.C., Bryant L.D., Bone A.J., Deonarine A., Chae S., Therezien M., Colman B.P., Hsu-Kim H., Bernhardt E.S., Matson C.W., Wiesner M.R.: Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. EnvironmentalScience and Technology. 46, 13, 7027–7036 (2012).
  • 34. Łuczkiewicz A., Felis E., Ziembińska A., Gnida A., Kotlarska E., Olańczuk-Neyman K., Surmacz-Górska J.: Resistance of Escherichia coli and Enterococcus spp. to selected antimicrobial agents present in municipal wastewater. Journal of Water and Health. 11, 4, 600–612 (2013).
  • 35. Małachowska-Jutsz A.: Mikoryzacja roślin a efektywność fitoremediacji gruntów zanieczyszczonych węglowodorami. Zeszyty Naukowe Politechniki Śląskiej, nr 1782, Gliwice 2008.
  • 36. Miksch K., Cema G., Corvini P. F.-X, Felis E., Sochacki A., Surmacz- Górska J., Wiszniowski J., Żabczyński S.: R&D priorities in the field of sustainable remediation and purification of agro-industrial and municipal wastewater. New Biotechnology. 32, 1, 128–132 (2015)
  • 37. Miksch K., Konczak B.: Distribution of Extracellular Polymeric Substances and their Role in Aerobic Granule Formation. Chemical and Process Engineering. 33(4), 679–688 (2012).
  • 38. Morgenroth E., Sherden T., van Loosdrecht M.C.M., Heijnen J.J., Wilderer P.A.: Aerobic granular sludge in a sequencing batch reactor. Wat. Res. 31, 3191–3194 (1997).
  • 39. Mulder A.: The quest for sustainable nitrogen removal technologies. Water Science and Technology. 48(1), 67–75 (2003).
  • 40. Muyzer G., Smalla K.: Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73, 127–141 (1998).
  • 41. Nivala J., Rousseau, D.: Reversing clogging in subsurface-flow constructed wetlands by hydrogen peroxide treatment: two case studies. Water Science and Technology 59, 10, 2037–2046 (2009).
  • 42. Oller I., Malato S., Sanchez-Perez J. A.: Combination of advanced oxidation processes and biological treatments for wastewater decontamination – A review. Science of Total Environment. 409, 4141–4166 (2011).
  • 43. Panz K., Miksch K.: Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. Journal of Environmental Management. 113, 85–92 (2012).
  • 44. Park Ch., Novak J.T., Helm R.F., Ahn Y-O. and Esen A.: Evaluation of the extracellular proteins in full-scale activated sludges. Water Res. 42, 3879–3889 (2008).
  • 45. Parsons S. (red.): Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London 2005.
  • 46. Paruch A., Mæhlum T., Obarska-Pempkowiak H., Gajewska M., Wojciechowska E., Ostojski A.: Rural domestic wastewater treatment in Norway and Poland: experiences, cooperation and concepts on the improvement of constructed wetland technology. Water Science and Technology. 63(4), 776–781 (2014).
  • 47. Pignanelli S.: Laboratory diagnosis of Toxoplasma gondii infection with direct and indirect diagnostic techniques. Indian Journal of Pathology and Microbiology. 54 (4), 786–789 (2011).
  • 48. Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E.: Biological Removal of Azo and Triphenylmethane Dyes and Toxicity of Process By- Products. Water Air and Soil Pollution. 223, 1581–1592 (2012).
  • 49. Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E.: Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water Air and Soil Pollution. 224, 1534–1543 (2013).
  • 50. Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E.: Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Brazilian Journal of Microbiology – zaakceptowany do publikacji 2015.
  • 51. Rey A., Carbajo J., Adán C., Faraldos M., Bahamonde A., Casas J.A., Rodriguez J.J.: Improved mineralization by combined advanced oxidation processes. Chemical Engineering Journal. 174, 134–142 (2011).
  • 52. Rizzo L.: Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45, 4311–4340 (2011).
  • 53. Selvaratnam S., Schoedel B.A., McFarland B.L., Kulpa C.F.: Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor. Applied and Environmental Microbiology. 61, 11, 3981–3985 (1995).
  • 54. Sochacki A., Faure O., Guy B., Surmacz-Górska J.: Polishing of Real Electroplating Wastewater in Microcosm Fill-and-Drain Constructed Wetlands. W: The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape (pod red. Jana Vymazala), Springer International Publishing Switzerland, 2015,
  • 55. Sochacki A., Surmacz-Górska J., Faure O., Guy B.: Microcosm fill-anddrain constructed wetlands for the polishing of synthetic electroplating wastewater. Chemical Engineering Journal. 251C, 10–16 (2014).
  • 56. Sochacki A., Surmacz-Górska J., Faure O., Guy B.: Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Effect of operating conditions. Chemical Engineering Journal. 237, 250–258 (2014).
  • 57. Sochacki A., Surmacz-Górska J., Faure O., Guy B.: Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Metals removal mechanisms. Chemical Engineering Journal. 242, 43–52 (2014).
  • 58. Strous M., Heijen J. J., Kuenen J. G., Jetten M. S. M.: The sequencing batch bioreactor as a powerful tool for the study of slow growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology. 50, 589–596 (1998).
  • 59. Świderska-Dąbrowska R., Piaskowski K.: Wpływ charakteru zanieczyszczeń organicznych na efektywność ich utleniania w procesie Fentona. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 15, 1126–1142 (2013).
  • 60. Tay J.H., Liu Q.S. and Liu Y.: The role of cellular polysaccharides in the formation and stabilit of aerobic granules. Lett. Appl. Microbiol. 33, 222–226 (2001).
  • 61. Ternes T. A., Joss A. (pod red.): Human Pharmaceuticals, Hormones and Fragrances: The challenge of micropollutants in urban water management. IWA Publishing, London 2006.
  • 62. Thamdrup B., Dalsgaard T.: Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology. 68, 1312–1318 (2002).
  • 63. Tian Y.: Behaviour of bacterial extracellular polymeric substances from activated substances from activated sludge: a review, Int. J. Environment and Pollution. 32(1), 78–89 (2008).
  • 64. Turek-Szytow J., Ziembińska A., Miksch K., Tekla P., Walawska B.,Gluzińska J.: Evaluation of the impact of calcium peroxide on soil propertiesof permanently petroleum-polluted soils. Przemysł Chemiczny. 91(6),1209–1213 (2012).
  • 65. van der Roest H.F., de Bruin L.M.M., Gademan G., Coelho F.: Towards sustainable waste water treatment with Dutch Nereda® technology, Water Practice & Technology. 6(3) (2011).
  • 66. Vázquez-Padín J., Fernádez I., Figueroa M., Mosquera-Corrala A., Campos J-L., Méndez R.: Applications of Anammoxnext term based processes to treat anaerobic digester supernatant at room previous temperature. Bioresource Technology. 100(12), 2988–2994 (2009).
  • 67. Vilar V.J.P., Maldonado M.I., Oller I., Malato S., Boaventura R.A.R.: Solar treatment of cork boiling and bleaching wastewaters in a pilot plant. Water Research. 43, 4050–4062 (2009).
  • 68. von Gunten U.: Review: Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research. 37, 1443–1467 (2003).
  • 69. Vymazal J.: The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Research. 47(14), 4795–4811 (2013).
  • 70. Włodarczyk-Makuła M.: Zmiany ilościowe WWA w ściekach oczyszczonych podczas utleniania. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 16, 1093–1104 (2011).
  • 71. Wu S., Kuschk P., Brix H., Vymazal J., Dong, R.: Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research. 57, 40–55 (2014).
  • 72. Yeber M.C., Rodriguez J., Freer J., Baeza J., Duran N., Mansilla H.D.: Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere. 39, 1679–1688 (1999).
  • 73. Zarzycki R. (red.): Zaawansowane techniki utleniania w ochronie środowiska. Polska Akademia Nauk Oddział w Łodzi, Łódź 2002.
  • 74. Ziembińska-Buczyńska A.: Dynamika zmian bioróżnorodności zespołów bakterii biorących udział w przemianach związków azotu w złożu tarczowym oczyszczającym ścieki koksownicze. Wydawnictwo Politechniki Śląskiej, Gliwice (w druku), 2015.
  • 75. Ziembińska A., Ciesielski S., Gnida A., Żabczyński S., Surmacz-Górska J., Miksch K.: Comparison of Ammonia-Oxidizing Bacterial Community Structure in Membrane-Assisted Bioreactors Using PCR-DGGE and FISH. Journal of Microbiology and Biotechnology. 22(8), 1035–1043 (2012).
  • 76. Ziembińska A., Ciesielski S., Miksch K.: Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE). Journal of General and Applied Microbiology. 55, 373–380 (2009).
  • 77. Ziembińska A., Ciesielski S., Wiszniowski J.: DGGE-based monitoring of bacterial diversity in activated sludge dealing with wastewater contaminated by organic petroleum compounds. Archives of Environmental Protection. 36(4), 119–125 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9416e592-a350-40fc-9529-ce35d176b751
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.