PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation of hexamethylol melamine resin with low crystallization water and low viscosity for hexamethylol melamine/polyvinyl alcohol composite membrane

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hexamethylol melamine resins (HMM) with low crystallization water content and low viscosity were prepared by inhibiting the condensation polymerization of low hexamethylol melamine. The effects of catalyst, pH, formalde-hyde/melamine ratio, reaction temperature and time on the synthesis parameters of HMM were investigated. The results showed that the sample (HMM8) synthesized with Na2CO3-NaHCO3 as catalyst had the crystallization water content lower than 10%, being with a viscosity of about 0.26 Pa·s. The melting temperature of HMM8/polyvinyl alcohol (PVA) curing system was about 164.3 oC. It was found that the higher the amount of formaldehyde, the greater the hydroxyl methyl bounded to each triazine ring. Compared with the traditional melamine formaldehyde resin which had the crystallization water content of about 20–30%, the production of this resin was expected to reduce the energy consumption of industrial reaction, while the resin with 10% crystallization water content was more conducive to the development of alloying HMM/PVA composite membrane.
Rocznik
Strony
47--56
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wz.
Twórcy
  • Hubei University of Technology, Nano Inorganic Functional Materials Laboratory, Wuhan 430068, Hubei, China
autor
  • Hubei University of Technology, Nano Inorganic Functional Materials Laboratory, Wuhan 430068, Hubei, China
  • Hubei University of Technology, Nano Inorganic Functional Materials Laboratory, Wuhan 430068, Hubei, China
autor
  • Shanghai University of Electric Power, College of Energy and Mechanical Engineering, Shanghai 200090, China
autor
  • Hubei University of Technology, New Catalytic Technology and Green Chemical Process, Wuhan 430068, Hubei, China
Bibliografia
  • 1. Kim, S., Kim, H.J., Kim, H.S. & Lee, H.H. (2006). Effect of Bio–Scavengers on the Curing Behavior and Bonding Properties of Melamine–Formaldehyde Resins. Macromol. Mater. Engin. 291(9), 1027–1034. DOI: 10.1002/mame.200600213.
  • 2. Fataraite, E., Jankauskaite, V., Marazas, G., Milašiene, D. & K.Žukiene. (2009). Viscosity and Surface Properties of Melamine-Formaldehyde Resin Composition. Mater. Sci. 15(3), 250–254.
  • 3. Wang, D.W., Zhang, X.X., Luo, S., Zhao, Q., & Sai, L.I. (2012). Study of preparation and modification and properties of melamine formaldehyde resin foam. J. Func. Mater.
  • 4. Jin, F.L., Li, X. & Park, S.J. (2015). Synthesis and application of epoxy resins: A review. J. Ind. Engin. Chem. 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.
  • 5. Jiang, J., Wu, Y., Sun, G., Zhang, L. & Feng, X. (2021). Accumulation and Potential Health Risks of Antimony in Atmospheric Particulate Matter. ACS omega. 6(14), 9460–9470. DOI: 10.1021/acsomega.0c06091.
  • 6. Zhu, K., Zhao, Y., Yang, Y., Bai, Y. & Zhao, T. (2020). Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro. ACS omega. 5(32), 20399–0408. DOI: 10.1021/acsomega.0c02364.
  • 7. Khan, Z.H., Gao, M., Qiu, W. & Song, Z. (2020). Efficient As (III) Removal by Novel MoS2-Impregnated Fe-Oxide– Biochar Composites: Characterization and Mechanisms. ACS omega. 5(22), 13224–13235. DOI: 10.1021/acsomega.0c01268.
  • 8. Zhou, W.R., Jian-Zhang, L.I., Wen-Jun, L.I., Zhi-Ming, Y.U., Zhang, D.R., & Zhao, J.J. (2004). The new progress of urea-formaldehyde resin with low formaldehyde content and its wood-products with low formaldehyde emission. China Adhesives, 13(1), 54–58.
  • 9. Lin, C. (2001). A review of melamine modified ureaformaldehyde resin adhesive. Technology On Adhesion & Sealing. 5, 201–225.
  • 10. Kotova, V.V., Maslosh, V.Z. & Maslosh, O.V. (2013). Dicarboxylic acids amides as an acceptor of formaldehyde in urea-formaldehyde resins. Rus. J. Appl. Chem. 86(6), 841–844. DOI: 10.1134/S1070427213060098.
  • 11. Palanikkumaran, M., Gupta, K.K., Agrawal, A.K. & Jassal, M. (2009). Highly stable hexamethylolmelamine microcapsules containing n-octadecane prepared by in situ encapsulation. J. Appl. Pol. Sci. 114(5), 2997–3002. DOI: 10.1002/app.30923.
  • 12. Yang, J. & Li, X.R. (2005). Both Preparation and stability for high solid content etherified melamine-formaldehyde resin. Thermosetting Resin. 16,1589–1756.
  • 13. Sarkar, N.K. & Dounce, A.L. (1961). A spectroscopic study of the reaction of formaldehyde with deoxyribonucleic and ribonucleic acids. Biochimica et Biophysica Acta, 49(1), 160–169. DOI: 10.1016/0006-3002(61)90879-4.
  • 14. Okano, M. & Ogata, Y. (1952). Kinetics of the condensation of melamine with formaldehyde. J. Amer. Chem. Soc. 74(22), 5728–5731. DOI: 10.1021/ja01142a047.
  • 15. Gordon, M., Halliwell, A. & Wilson, T. (1966). Kinetics of the addition stage in the melamine–formaldehyde reaction. J. Appl. Pol. Sci. 10(8), 1153–1170. DOI: 10.1002/app.1966.070100807.
  • 16. Manley, T.R. (1973). Thermal Stability of Hexamethylolmelamine. Polymer J. 4(1), 111–113. DOI: 10.1295/polymj.4.111.
  • 17. Gündüz, G., Keskin, N., Kolak, Ü. & Mavis, B. (2018). Synthesis and characterization of solvent-free hybrid alkyd resin with hyperbranched melamine core. J. Coatings Technol. Res. 15(4), 831–843. DOI: 10.1007/s11998-017-0031-6.
  • 18. Ding, Z., Ding, Z., Ma, T. & Zhang, H. (2020). Condensation Reaction and Crystallization of Urea-Formaldehyde Resin during the Curing Process. BioResources. 15(2), 2924–2936.
  • 19. Zhang, B., Jiang, S., Du, G., Cao, M., Zhou, X. & Wu, Z. (2021). Polyurea-formaldehyde resin: a novel wood adhesive with high bonding performance and low formaldehyde emission. J. Adhesion. 97(5), 477–492. DOI: 10.1080/00218464.2019.1679631
  • 20. Yan, X.D., Sun, Q.L., Yang, K., Fan, H. & Li, B.G. (2016). Mechanism and kinetics of hexamethylolmelamine methyl etherification. J. Chem. Engin. Chinese Univ. 30(6), 1306–1312. 10.3969/j.issn. DOI: 1003-9015.2016.06.010.
  • 21. Prins, H.J. (2015). The acid catalyzed cannizarro reaction of formaldehyde. Recueil des Travaux Chimiques des Pays-Bas. 71(11), 1131–1136. DOI: 10.1021/jo01056a001.
  • 22. Kim, S.J. & Kim, J.H. (2015). Investigation on the role of ion exchange resin in the crystallization process for the purification of vancomycin. Kor. J. Chem. Engin. 32(3), 465–470. DOI: 10.1007/s11814-014-0222-0.
  • 23. Shiwei, Chen., Xuchen, Lu., Tizhuang, Wang. & Zhimin, Zhang. (2016). Preparation and characterization of ureaformaldehyde resin/reactive kaolinite composites. Particuology. 24, 203–209. DOI: 10.1016/j.partic.2015.05.007.
  • 24. Kai, K., Yu, W., Wei, Y., Xie, B.H. & Yang, M.B. (2012). Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: Role of high molecular weight resin and carbon nanotubes. Pol. Testing. 31(1), 117–126. DOI: 10.1016/j. polymertesting.2011.10.005.
  • 25. Jahromi, S., Litvinov, V. & Geladé, E. (1999). Physical gelation of melamine formaldehyde resin solutions. II. A combined light-scattering and low-resolution relaxation proton NMR study. J. Pol. Sci. Part B: Pol. Phys. 37(23), 3307–3318. DOI: 10.1002/(SICI)1099–0488(19991201)37.
  • 26. Jahromi, S. (1999). Storage stability of melamineformaldehyde resin solutions, 1. The mechanism of instability. Macromolec. Chem. Phys. 200(10), 2230–2239. DOI: 10.1002/(SICI)1521-3935(19991001)200:103.0.CO;2-U
  • 27. Xu, G., Liang, J., Zhang, B., Wu, Z., Lei, H. & Du, G. (2021). Performance and structures of urea-formaldehyde resins prepared with different formaldehyde solutions. Wood Sci. Technol. 1–19. 1 DOI: 0.1007/s00226-021-01280-y.
  • 28. Bilen, C.S., Harrison, N. & Morantz, D.J. (1979). Influence of thermal transformations on room-temperature phosphorescence of doped hexamethylol-melamine. Polymer. 20(12), 1515–1521. DOI: 10.1016/0032-3861(79)90018-1.
  • 29. Liu, K., Su, C., Ma, W., Li, H., Zeng, Z. & Li, L. (2020). Free formaldehyde reduction in urea-formaldehyde resin adhesive: Modifier addition effect and physicochemical property characterization. Bio Res. 15(2), 2339–2355.
  • 30. Liu, R., Zhang, X., Gao, S., Liu, X., Wang, Z. & Yan, J. (2016). Bio-based epoxy-anhydride thermosets from six-armed linoleic acid-derived epoxy resin. Rsc Adv. 6(58), 52549–52555.
  • 31. Wu, Z., Lei, H., Du, G., Cao, M., Xi, X. & Liang, J. (2016). Urea–formaldehyde resin prepared with concentrated formaldehyde. J. Adhes. Sci. Technol. 30(24), 2655–2666. DOI: 10.1080/01694243.2016.1193963.
  • 32. Henriques, A., Paiva, N., Bastos, M., Martins, J.M., Carvalho, L. & Magalhaes, F. (2017). Improvement of storage stability and physicochemical properties by addition of benzoguanamine in melamine-formaldehyde resin synthesis. J. Appl. Pol. Sci. 134(32), 45185.
  • 33. Bretterbauer, K. & Schwarzinger, C. (2012). Melamine derivatives-a review on synthesis and application. Current Org. Synthesis. 9(3), 342–356.
  • 34. Chen, S., Lu, X., Pan, F., Wang, T. & Zhang, Z. (2017). Preparation and characterization of urea-formaldehyde resin/reactive montmorillonite composites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 32(4), 783–790. DOI: 10.1007/s11595-017-1668-9.
  • 35. Savotchenko, S. & Kovaleva, E. (2021). The equation of glass transition of epoxy diane resin modified with the nanoparticle fillers. Polymer Bull. 1–12. DOI: 10.1007/s00289-021-03844-1.
  • 36. Kazuhiro, Y., Polyzois, G.L., Frangou, M.J. & Hiroshi, M. (2018). Evaluation of the frequency and temperature dependence of the dynamic mechanical properties of acetal resins. Dental Mater. J. 37(1), 146–151. DOI: 10.4012/dmj.2017-037.
  • 37. J.M., Pérez, F., Rodríguez, Alonso, M.V. & Oliet, M. (2011). Time–temperature–transformation cure diagrams of phenol–formaldehyde and lignin–phenol–formaldehyde novolac resins. J. Appl. Pol. Sci. 119(4), 2275–2282. DOI: 10.1002/app.32866.
  • 38. Stark, W., Jaunich, M. & McHugh, J. (2013). Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using Temperature-Modulated Differential Scanning Calorimetry (TMDSC). Polymer testing. 32(7), 1261–1272. DOI: 10.1016/j. polymertesting.2013.07.007.
  • 39. Hancock, B.C. & Zografi, G. (1994). The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharmac. Res. 11(4), 471–477. DOI: 10.1023/A:1018941810744
  • 40. Liu, W., Xie, Y., Xie, Q., Fang, K. & Chen, H. (2019). Solvent–Solvent Cooling Crystallization: An Effective Method to Control the Morphology and Size of Ammonium Perchlorate Crystals. Crys. Res. Technol. 54(10), 1900065. DOI: 10.1002/crat.201900065.
  • 41. Bosq, N., Guigo, N., Persello, J. & Sbi Rr Azzuoli, N. (2019). Crystallization of polytetrafluoroethylene in a wide range of cooling rates: Nucleation and diffusion in the presence of nanosilica clusters. Molecules. 24(9), 1797. DOI: 10.3390/molecules24091797.
  • 42. Dai, G., Zhan, L. & Guan, C. (2021). The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites. J. Pol. Engin. DOI: 10.1515/polyeng-2020-0356.
  • 43. Kwak, E.A., Kim, S.J. & Kim, J.H. (2012). Effect of ion exchange resin on increased surface area crystallization process for purification of vancomycin. Korean J. Chem. Engin. 29(11), 1487–1492. DOI: 10.1007/s11814-012-0135-8.
  • 44. Lamberti, G. (2011). Isotactic polypropylene crystallization: analysis and modeling. Europ. Pol. J. 47(5), 1097–1112. DOI: 10.1016/j.eurpolymj.2011.02.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-940f58f1-528c-4e21-86eb-80d2c97ac6e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.