PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of coatings created on selected Titanium alloys by Plasma Electrolytic Oxidation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The SEM and EDS results of coatings obtained on pure niobium and titanium alloys (NiTi and Ti6Al4V) by Plasma Electrolytic Oxidation in the electrolytes containing of 300 g and 600 g copper nitrate in 1 litre of concentrated phosphoric acid at 450 V for 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. For each coating, the Cu/P ratios were calculated. The maximum of that coefficient was found for niobium and Ti6Al4V alloy oxidised in the electrolyte containing 600 g of Cu(NO3)2 in 1 dm3 of H3PO4 and equaling to 0.22 (wt%) | 0.11 (at%). The minimum of Cu/P ratio was recorded for NiTi and Ti6Al4V alloys oxidised by PEO in electrolyte consisting of 300 g of copper nitrate in 1 dm3 of concentrated phosphoric acid and equals to 0.12 (wt%) | 0.06 (at%). The middle value of that ratio was recorded for NiTi and it equals to 0.16 (wt%) | 0.08 (at%).
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
  • arokosz@tu.koszalin.pl
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland
  • Tadeusz.Hryniewicz@tu.koszalin.pl
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • frsimon@ipfdd.de
  • Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany
Bibliografia
  • 1. Hryniewicz T., Physico-chemical and technological Fundamentals of electropolishing steels (Fizykochemiczneitechnologicznepodstawyprocesuelektropolerowaniastali), 1989, Monograph no. 26, ed. by Koszalin University of Technology Publishing.
  • 2. Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbkipowierzchniowejbiomateriałówmetalowych), 2007, ed. by Koszalin University of Technology Publishing.
  • 3. Rokosz K., Electrochemical Polishing in magnetic field (Polerowanieelektrochemiczne w polumagnetycznym), 2012, ed. by Koszalin University of Technology Publishing.
  • 4. Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments, Surface & Coatings Technology, 62(17-18) (2008), 3073-3076.
  • 5. Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface & Coatings Technology, 204(16-17) (2010), 2583-2592.
  • 6. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007), 325-332.
  • 7. Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface & Coatings Technology, 203(9)(2008),1508-1515.
  • 8. Hryniewicz T.,Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010),169-174.
  • 9. Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research, 83(9) (2012), 910-918.
  • 10. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010), 47-55.
  • 11. Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014), 57-64.
  • 12. Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012), 69-72.
  • 13. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015), 205-215.
  • 14. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015), 87-92.
  • 15. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface & Coatings Technology, 276 (2015), 516-520.
  • 16. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochimica Acta, 56(24) (2011), 8962-8968.
  • 17. Jin F. Y., Tong H. H., Shen L. R., Wang K., Chu P. K., Micro-structural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization, Materials Chemistry and Physics, 100(1) (2006), 31-33.
  • 18. Chung C.J., Su R.T., Chu H.J., Chen H.T., Tsou H.K., He J.L., Plasma electrolytic oxidation of titanium and improvement in osseointegration. J. Biomed. Mater. Res. B Appl. Biomater, 101(6) (2013),1023-1030.
  • 19. Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 (2013), 627-636.
  • 20. Sowa M., Kazek-Kęsik A., Krząkała A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions, Journal of Solid State Electrochemistry, 18(11) (2014), 3129-3142.
  • 21. Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions, Electrochimica Acta, 104 (2013), 518-525.
  • 22. Kazek-Kesik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part I, Surface & Coatings Technology, 276 (2015), 59-69.
  • 23. Kazek-Kęsik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part II, Surface & Coatings Technology, 276 (2015), 23-30.
  • 24. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 90(1) (2011), 84-90.
  • 25. Walsh F.C., Low C.T.J., Wood R.J.K., Stevens K.T., Archer J., Poeton A.R., Ryder Y. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of The Institute of Metal Finishing, 87(3) (2009),122-135.
  • 26. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surface & Coatings Technology, 130(2-3) (2000), 195-206.
  • 27. Rokosz K., Hryniewicz T., Dudek Ł., Malorny W., SEM and EDS analysis of NITINOL surfaces treated by Plasma Electrolytic Oxidation, Advances in Materials Science, 15(45) (2015), 41-47.
  • 28. Rokosz K., Hryniewicz T., Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials, World Scientific News, 35 (2016), 44-61.
  • 29. Rokosz K., Hryniewicz T., Raaen S., Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, (2015), DOI: 10.1007/s00170-015-8086-y
  • 30. Simka W., Habilitation summary of professional accomplishments (in Polish). Silesian University of Technology (Wydział Chemiczny, Politechnika Śląska), Gliwice, Chemical Engineering Department, 2013, 1-18.
  • 31. Jelinek M., Kocourek T., Remsa J., Weiserová M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichováe J., Antibacterial, cytotoxicity and physical properties of laser-silver doped hydroxyapatite layers, Materials Science and Engineering: C, 33(3) (2013), 1242-1246.
  • 32. Mishra G., Dash B., Pandey S., Mohanty P.P., Antibacterial actions of silver nanoparticles incorporated Zn-Al layered double hydroxide and its spinel, Journal of Environmental Chemical Engineering, 1(4) (2013),1124-1130.
  • 33. Rajendran A., Pattanayak D.K., Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications, RSC Advances, 106(4) (2014), 61444-61455.
  • 34. Trujillo N.A., Oldinski R.A., Ma H., Bryers J.D., Williams J.D., Popat K.C., Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium, Materials Science and Engineering: C, 32(8) (2012), 2135-2144.
  • 35. Hempel F., Finke B., Zietz C., Bader R., Weltmann K-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014), 52-58.
  • 36. Bellows C.G., Heersche J.N., Aubin J.E., Aluminium accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures, Calcif. Tissue Int., 65 (1999), 59-65.
  • 37. Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, J. Toxicol. Environ. Health B Crit. Rev., 10(1) (2007),1-269.
  • 38. Solving Titanium Implant Osseointegration Problems by Using Epoxy/Carbon-Fiber-Reinforced Composite, Titanium Today, (2015), 26-28.
  • 39. Browne R.C., Vanadium poisoning from gas turbines, British Journal of Industrial Medicine, 2(12) (1995), 57-59.
  • 40. Jacobs J.J., Skipor A.K., Black J., Urban R., Galante J.O., Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy, The Journal of Bone & Joint Surgery, 73 (1991), 1475-1486.
  • 41. Aluminum CAS # 7429-90-5, PUBLIC HEALTH STATEMENT, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, http://www.atsdr.cdc.gov, Atlanta, 2008.
  • 42. Landsberg J.P., McDonald B., Watt F., Absence of aluminium in neuritic plaque cores in Alzheimer’s disease, Nature, 360 (1992), 65-68.
  • 43. Seiler H.G., Sigel H., Sigel A., Handbook of toxicity of inorganic compounds, Marcel Dekker Inc., 1998, New York, NY.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93ff37e6-a6af-4c43-951f-87b71e528a40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.