PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gravitational water vortex: Finite element analysis based design and implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following work gives the details of the modelling, simulation, and testing of a small portable gravitational water vortex (GWV) based power plant. The gravitation water vortex is an ideal source of renewable energy for rural areas that have a small body of flowing water. For this purpose, we have selected a small size for the vortex chamber that enables it to form a vortex with limited amounts of water. The paper gives the details of the simulation of the GWV in COMSOL FEA software and the parameters that were chosen for optimization. These parameters were the height of the vortex chamber, the number of blades, the length of the blades, and the tilt angle of the blades. These parameters were systematically varied step by step, to observe their effect on the speed of the rotor. The results of the parametric sweep that was performed on all the parameters are also presented. Based on the simulation results an optimal set of parameters was chosen for the physical implementation of the GWV. The paper also goes into the details of the construction of the physical GWV, the experimental setup that was devised for the testing and verification of the simulation results.
Rocznik
Strony
357–--368
Opis fizyczny
Bibliogr. 22 poz., wykr., tab., rys.
Twórcy
  • Saintgits College of Engineering, Pathamuttom P.O Kottayam, Kerala, India Pincode: 686532
autor
  • Saintgits College of Engineering, Pathamuttom P.O Kottayam, Kerala, India Pincode: 686532
autor
  • Saintgits College of Engineering, Pathamuttom P.O Kottayam, Kerala, India Pincode: 686532
autor
  • Saintgits College of Engineering, Pathamuttom P.O Kottayam, Kerala, India Pincode: 686532
Bibliografia
  • 1. Bajracharya T., Ghimire R., Timilsina A., 2018. Design and performance analysis of water vortex powerplant in context of Nepal. 20th International Seminar on Hydropower Plants. Vienna, Austria, 14–16 November 2018.
  • 2. Bawiec C.R., Sunny Y., Nguyen A.T., Samuels J.A., Weingarten M.S., Zubkov L.A., Lewin P.A., 2013. Finite element static displacement optimization of 20–100 kHz flexural transducers for fully portable ultrasound applicator. Ultrasonics, 53, 511–517. DOI: 10.1016/j.ultras.2012.09.005.
  • 3. Cherni J.A., Dyner I., Henao F., Jaramillo P., Smith R., Font R.O., 2007. Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35, 1493–1504. DOI: 10.1016/j.enpol.2006.03.026.
  • 4. Dhakal S., Timilsina A.B., Dhakal R., Fuyal D., Bajracharya T.R., Pandit H.P., Amatya N., 2015. Mathematical modeling, design optimization and experimental verification of conical basin: Gravitational water vortex power plant. World’s Largest Hydro Conference. Dickinson E.J., Ekström H., Fontes E., 2014. COMSOL Multiphysics®: Finite element software for electrochemi-calanalysis. A mini-review. Electrochem. commun., 40, 71–74. DOI: 10.1016/j.elecom.2013.12.020.
  • 5. Frankfurt School-UNEP Centre/BNEF, 2020. Global trends in renewable energy investment 2020. Frankfurt School of Finance & Management gGmbH. Available at: https://www.fs-unep-centre.org/wp-content/uploads/2020/06/GTR_2020.pdf.
  • 6. Guzmán V.J.A., Glasscock J.A., 2021. Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system. Water Sci. Eng., 14, 72–79. DOI: 10.1016/j.wse.2021.03.004.
  • 7. Guzmán V.J.A., Glasscock J.A., Whitehouse F., 2019. Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru. Sustainable Energy Technol. Assess., 35, 131–138. DOI: 10.1016/j.seta.2019.06.004.
  • 8. Heffron R.J., Körner M.F., Schöpf M., Wagner J., Weibelzahl M., 2021. The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe. Renewable Sustainable Energy Rev., 140, 110743. DOI: 10.1016/j.rser.2021.110743.
  • 9. Hughes T.J., 2012. The finite element method. Linear static and dynamic finite element analysis. Courier Corporation. IEA., 2020. Global energy review 2020. The impacts of the Covid-19 crisis on global energy demand and CO2 emissions. International Energy Agency. Available at: https://www.iea.org/reports/global-energy-review-2020.
  • 10. IRENA, 2019. Global energy transformation: A roadmap to 2050. International Renewable Energy Agency, Abu Dhabi, ed. 2019. Available at: https://www.irena.org/publications/2019/Apr/Global-energy-transformation- A-roadmap-to-2050-2019Edition.
  • 11. IRENA, 2020. Global renewables outlook: Energy transformation 2050. International Renewable Energy Agency, Abu Dhabi, ed. 2020. Available at: https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook- 2020.
  • 12. Lahamornchaiyakul W., 2021. The CFD-based simulation of a horizontal axis micro water turbine. Walailak J. Sci. Technol., 18, 9238. DOI: 10.48048/wjst.2021.9238.
  • 13. Lugt H.J., 1983. Vortex flow in nature and technology. Wiley-Interscience, New York. Mulligan S., Casserly J., Sherlock R., 2016. Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices, In: Gourbesville P., Cunge J., Caignaert G. (Eds.), Advances in Hydroinformatics. Springer Water. Springer, Singapore. DOI: 10.1007/978-981-287-615-7_37.
  • 14. Nazarudin N.N.A., Tokit E.M., Rosli M.A.M., Sa’at F.A.Z.M., Herawan S.G., Abi Syahputra S.I., 2022. The use of CFD as the design tool for designing a gravitational water vortex turbine. IOP Conf. Ser.: Earth Environ. Sci., 998, 012014. DOI: 10.1088/1755-1315/998/1/012014.
  • 15. Nejadkhaki H.K., Sohrabi A., Purandare T.P., Battaglia F., Hall J.F., 2021. A variable twist blade for horizontal axis wind turbines: Modeling and analysis. Energy Convers. Manage., 248, 114771. DOI: 10.1016/j.enconman.2021.
  • 16. 114771. Rahman M.M., Tan J.H., Fadzlita M.T., Muzammil A.W.K., 2017. A review on the development of gravitational water vortex power plant as alternative renewable energy resources. IOP Conf. Ser.: Mater. Sci. Eng., 217, 012007. DOI: 10.1088/1757-899X/217/1/012007.
  • 17. Ramos H.M., Simão M., Kenov K.N., 2012. Low-head energy conversion: A conceptual design and laboratory investigation of a microtubular hydro propeller. Int. Sch. Res. Not., 2012, 846206. DOI: 10.5402/2012/846206.
  • 18. REN21, 2020. Renewables 2020. Global status report. REN21 Secretariat. Available at: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf.
  • 19. Sayma A., 2009. Computational fluid dynamics.Ventus Publishing ApS. Schetz J.A., Fuhs A.E. (Eds.), 1999. Fundamentals of fluid mechanics. John Wiley & Sons, New York.
  • 20. Timilsina A.B., Mulligan S., Bajracharya T.R., 2018. Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean. Techn. Environ. Policy, 20, 1737–1760. DOI: 10.1007/s10098-018-1589-0.
  • 21. Tripathi L., Mishra A.K., Dubey A.K., Tripathi C.B., Baredar P., 2016. Renewable energy: An overview on its contribution in current energy scenario of India. Renewable Sustainable Energy Rev., 60, 226–233. DOI: 10.1016/j.rser.2016.01.047.
  • 22. Ullah R., Cheema T.A., Saleem A.S., Ahmad S.M., Chattha J.A., Park C.W., 2019. Performance analysis of multistage gravitational water vortex turbine. Energy Convers. Manage., 198, 111788. DOI: 10.1016/j.enconman.2019. 111788.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93fd06db-1f67-4173-b8a9-5f3588f5b5b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.