PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of increasing the relative throughput of requesting radar systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metoda zwiększania względnej przepustowości żądających systemów radarowych
Języki publikacji
EN
Abstrakty
EN
In the presented work, a method is proposed for increasing the relative throughput of requesting radar systems for monitoring airspace in which a successive transition is made from servicing a separate requester of radar systems to servicing a network of requesters. They observe this air object by forming an analysis time interval on the aircraft's responder, detecting request signals at this time interval. If at least one request signal is detected in the time analysis interval, at the end of the analysis time interval, a response signal is emitted, which includes the spatial coordinates of the given air object. This makes it possible to exclude the possibility of paralyzing an aircraft transponder by a deliberate correlated interference of the required intensity by the interested party and, as a result, to increase the relative throughput of requesting radar systems for airspace monitoring.
PL
W prezentowanej pracy zaproponowano metodę zwiększenia względnej przepustowości żądających systemów radarowych do monitorowania przestrzeni powietrznej, w której następuje sukcesywne przejście od obsługi odrębnego zleceniodawcy systemów radarowych do obsługi sieci zleceniodawców. Obserwują ten obiekt powietrzny, tworząc przedział czasu analizy w urządzeniu odpowiadającym samolotu, wykrywając sygnały żądania w tym przedziale czasowym. Jeżeli co najmniej jeden sygnał żądania zostanie wykryty w przedziale czasu analizy, na końcu przedziału czasu analizy emitowany jest sygnał odpowiedzi, który zawiera współrzędne przestrzenne danego obiektu lotniczego. Pozwala to wykluczyć możliwość sparaliżowania transpondera statku powietrznego przez celową skorelowaną ingerencję o wymaganym natężeniu przez zainteresowaną stronę i w efekcie zwiększyć względną przepustowość żądania systemów radarowych do monitorowania przestrzeni powietrznej.
Rocznik
Strony
97--101
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
autor
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
  • Kharkiv National University of Radio Electronics, Nauky Ave, 14, Kharkiv, 61000 Ukraina
Bibliografia
  • [1] G. Jiang, Y. Fan and H. Yuan, "Assessing the Capacity of Air Traffic Control Secondary Surveillance Radar System," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), (2019), pp. 1-3
  • [2] V. Semenets, I. Svyd, I. Obod, O. Maltsev and M. Tkach, "Quality Assessment of Measuring the Coordinates of Airborne Objects with a Secondary Surveillance Radar", Data-Centric Business and Applications, (2021), pp. 105-125
  • [3] S. Solonskaya and V. Zhyrnov, "Semantic technology in a survey radar at aircrafts detection and recognition", Radiotekhnika, vol. 1, no. 196, (2019), pp. 32-37
  • [4] I. Svyd, I. Obod, O. Maltsev and G. Zavolodko, "Optimizing Airborne Object Detection of Secondary Surveillance Radar in Intra-System Interference Conditions," 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), (2021), pp. 33-37
  • [5] T. M. Schuck, B. Shoemaker and J. Willey, "Identification friend-or-foe (IFF) sensor uncertainties, ambiguities, deception and their application to the multi-source fusion process," Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), (2000), pp. 85-94
  • [6] Y. Ahmadi, K. Mohamedpour and M. Ahmadi, "Deinterleaving of Interfering Radars Signals in Identification Friend or Foe Systems", in Proc. of 18th Telecommunications forum TELFOR, Telecommunications Society - Belgrade, ETF School of EE, University in Belgrade, IEEE Serbia & Montenegro COM CHAPTER, (2010), pp. 729-733
  • [7] I. Svyd, I. Obod, O. Maltsev, T. Tkachova and G. Zavolodko,"Improving Noise Immunity in Identification Friend or Foe Systems," 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), (2019), pp. 73-77
  • [8] A. Maliarenko, Radiolocation systems for air traffic control and state-monitored radar-based identification. Kharkov: KhUPS, (2007)
  • [9] D. Weeda, L. Ligthart, L. Nieuwkerk, L. Nieuwkerk and D. van der Klein, "Quantitative Estimation of Secondary Surveillance Radar Information", Journal of Navigation, vol. 45, no. 1, (1992), pp. 26-35
  • [10] I. Svyd, I. Obod, G. Zavolodko and O. Maltsev, "Interference immunity of aircraft responders in secondary surveillance radars," 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), (2018), pp. 1174-1178
  • [11] I. Obod, I. Svyd, O. Maltsev and B. Bakumenko, "Spatial Methods for Increasing the Bandwidth of a Mobile Information Network," 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), (2020), pp. 50-54
  • [12] T. Otsuyama, J. Naganawa, J. Honda and H. Miyazaki, "An analysis of signal environment on 1030/1090MHz aeronautical L-band systems," 2017 International Symposium on Antennas and Propagation (ISAP), (2017), pp. 1-2
  • [13] T. Otsuyama, J. Honda, J. Naganawa and H. Miyazaki, "Analysis of signal environment on 1030/1090MHz aeronautical surveillance systems," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), (2018), p. 71
  • [14] E. Kim and K. Sivits, "Blended secondary surveillance radar solutions to improve air traffic surveillance", Aerospace Science and Technology, vol. 45, (2015), pp. 203-208
  • [15] H. Duan, Y. Cheng, B. Shen, K. He and G. Bai, "LFM Interference Cancellation Algorithm Based on MDPT-WC for Mark XIIA Mode 5," 2020 IEEE 20th International Conference on Communication Technology (ICCT), (2020), pp. 246-252
  • [16] H. Li, F. Chen and J. Wang, "A Preamble Detecting Algorithm of MOD-5 Interrogating Signal", Applied Mechanics and Materials, vol. 543-547, (2014), pp. 2733-2737
  • [17] J. Yang, C. Guan and P. Liu, "Modeling and Dynamic Simulation of MARK XIIA Mode 5 System", Advanced Materials Research, vol. 588-589, (2012), pp. 1324-1327
  • [18] V. Zhyrnov and S. Solonskaya, "Semantic analysis of fluctuations of a radar pack for identification of air objects", Radiotekhnika, no. 203, pp. (2020), 197-203
  • [19] Y. Guo, J. Yang and C. Guan, "A Mode 5 signal detection method based on phase and amplitude correlation," 2013 Ninth International Conference on Natural Computation (ICNC), (2013), pp. 1219-1223
  • [20] L. Huan, Z. Feng, L. Bai and W. Jian, "One Joint Demodulation and Despreading Algorithm for MOD5", The Open Automation and Control Systems Journal, vol. 7, no. 1, (2015), pp. 386-397
  • [21] STANAG 4193 Document, “Technical Characteristics Of IFF Mk X And Mk XII Interrogators And Transponders (Part V) - Technical Description Of The MkXII System,” NATO Standard, (2016)
  • [22] I. Obod, I. Svyd, G. Zavolodko, O. Maltsev, B. Bakumenko and V. Chumak, "Assessing SSR Relative Data Capacity," 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), (2021), pp. 142-146
  • [23] Y. H. Chen, S. Lo, P. Enge and S. S. Jan, "Evaluation & comparison of ranging using Universal Access Transceiver (UAT) and 1090 MHz Mode S Extended Squitter (Mode S ES)," 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, (2014), pp. 915-925
  • [24] I. Svyd, I. Obod, O. Maltsev, I. Shtykh, G. Zavolodko and G. Maistrenko, "Model and Method for Request Signals Processing of Secondary Surveillance Radar," 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), (2019), pp. 1-4
  • [25] T. Otsuyama, J. Honda, K. Shiomi, G. Minorikawa and Y. Hamanaka, Performance evaluation of Passive Secondary Surveillance Radar for small aircraft surveillance, 2015 European Radar Conference (EuRAD), (2015), pp. 505-508
  • [26] V. Zhyrnov, S. Solonskaya and V. Zarytskyi, Method for dealing with non-stationary natural and simulating interference in intellectual surveillance radars, Radiotekhnika, no. 206, (2021), pp. 115-121
  • [27] G. Jiang, Y. Fan and H. Yuan, Assessing the Capacity of Air Traffic Control Secondary Surveillance Radar System, 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), (2019)
  • [28] I. Obod, I. Svyd, O. Maltsev and S. Starokozhev, The Effect of Masking Interference on the Quality of Request Signal Detection in Aircraft Responders of the Identification Friend or Foe Systems, 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), (2020), pp. 721-726
  • [29] N. Bouhlel, S. Meric, C. Moullec and C. Brousseau, FMCW Radar System for Transponder Identification, Progress In Electromagnetics Research B, vol. 81, (2018), pp. 101-122
  • [30] G. Roberts, Secondary Surveillance Radar and Airborne Transponder System, The Journal of the Royal Aeronautical Society, vol. 65, no. 606, (1961), pp. 407-411
  • [31] I. Svyd, I. Obod and O. Maltsev, "Interference Immunity Assessment Identification Friend or Foe Systems", Data-Centric Business and Applications, (2021), pp. 287-306
  • [32] S. Bartolini and G. Galati, High-capacity location and identification system for cooperating mobiles with frequency agile and time division transponder device on board, US7570195B2, (2004)
  • [33] I. Svyd, I. Obod, O. Maltsev and A. Hlushchenko, SecondarySurveillance Radar Response Channel Information Security Improvement Method, 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), (2020), pp. 341-345
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93fc3e7f-bbc0-49d8-9a80-11f6c5032d31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.