PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of ball size distribution on power draw, charge motion and breakage mechanism of tumbling ball mill by discrete element method (DEM) simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, the effect of ball size distribution on the mill power draw, charge motion regime and breakage mechanism in a laboratory ball mill was studied using the discrete element method (DEM) simulation. The mill shell and crushing balls were made of Plexiglas® and compressed glass, respectively. Modeling was performed using Particle Flow Code 3D (PFC3D). Model parameters were back-calculated by comparing the power draws and images obtained from simulation and laboratory test works. After determining the model parameters, the mill was simulated in mill fillings of 15, 20, 25, 30, 35 and 40% with ball media of 2 and 2.5 cm in diameter. For every mill filling, the numbers of big and small balls were changed and 11 scenarios were chosen. The results showed that at a constant mill filling, the power draw was changed with changing the ball size distribution and for all mill fillings the maximum power draw occurred when the fraction of small balls was between 30-40%. The effect of ball size distribution increased with increasing mill filling and for the mill filling of 35%, the ball size distribution had the maximum effect on the power draw. When the mill charge contained mono-sized balls, the ball flow regime inside the mill transited to the cataracting and impact breakage was the main breakage mechanism. Increasing the fraction of big balls from 0 to 70% led the flow of balls into the cascading regime and breakage mechanism to attrition.
Rocznik
Strony
258--269
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
autor
  • Department of Mining Engineering, Lorestan University, Khorramabad, Iran
autor
  • Department of Mining Engineering, Lorestan University, Khorramabad, Iran
Bibliografia
  • AUSTIN, L.G., SHOJI, K., LUCKIE, P.T., 1976. The effect of ball size on mill performance. Powder Technol., 14, 71–79.
  • BARKER, G.C., 1994. Computer simulations of granular materials. in: Granular Matter. Springer, pp. 35–83.
  • BEINERT, S., FRAGNIÈRE, G., SCHILDE, C., KWADE, A., 2015. Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD--DEM simulations. Chem. Eng. Sci., 134, 648–662.
  • BOND, F.C., 1961. Crushing and Grinding Calculations. Allis Chalmers Tech. Pub. O7R9235B.
  • CHO, H., KWON, J., KIM, K., MUN, M., 2013. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technol., 246, 625–634.
  • CLEARY, P.W., 2015. A multiscale method for including fine particle effects in DEM models of grinding mills. Miner. Eng., 84, 88–99.
  • CLEARY, P.W., 2001. Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. Int. J. Miner. Process., 63, 79–114.
  • CLEARY, P.W., 1998. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner. Eng., 11, 1061–1080.
  • CLEARY, P.W., HOYER, D., 2000. Comparison of DEM predictions with experiment. Int. J. Miner. Process., 59, 131–148.
  • CLEARY, P.W., MORRISON, R.D., 2012. Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill. Miner. Eng., 39, 184–195.
  • CLEARY, P.W., MORRISON, R.D., 2011. Understanding fine ore breakage in a laboratory scale ball mill using DEM. Miner. Eng., 24, 352–366.
  • CLEARY, P.W., MORRISSON, R., MORRELL, S., 2003. Comparison of DEM and experiment for a scale model SAG mill. Int. J. Miner. Process., 68, 129–165.
  • CLEARY, P.W., OWEN, P.J., 2016. Using DEM to understand scale-up for a HICOM{®} mill. Miner. Eng., 92, 86–109.
  • CLEARY, P.W., SINNOTT, M., MORRISON, R., 2006a. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media. Miner. Eng., 19, 1517–1527.
  • CLEARY, P.W., SINNOTT, M., MORRISON, R., 2006b. Analysis of stirred mill performance using DEM simulation : Part 2 – Coherent flow structures, liner stress and wear, mixing and transport. Miner. Eng., 19, 1551–1572.
  • CUNDALL, P.A., STRACK, O.D.L., 1979. A discrete numerical model for granular assemblies. Geotechnique, 29, 47–65.
  • DATA, A., MISHRA, B.K., RAJAMANI, R.K., MISHRA, A.D.B.K., RAJAMANI, R.K., 2013. Analysis of power draw in ball mills by the discrete element method. Can. Metall. Q., 38, 133–140.
  • DELANEY, G.W., CLEARY, P.W., MORRISON, R.D., CUMMINS, S., LOVEDAY, B., 2013. Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Miner. Eng., 50–51, 132–139.
  • DELGADILLO, J.A., 2012. Experimental validation of 2D DEM code by digital image analysis in tumbling mills. Miner. Eng., 25, 20–27.
  • DJORDJEVIC, N., 2005. Influence of charge size distribution on net-power draw of tumbling mill based on DEM modelling. Miner. Eng., 18, 375–378.
  • DJORDJEVIC, N., 2003. Discrete element modelling of the influence of lifters on power draw of tumbling mills q. Miner. Eng. 16, 331–336. doi:10.1016/S0892-6875(03)00019-0
  • DJORDJEVIC, N., SHI, F.N., MORRISON, R., 2004. Determination of lifter design , speed and filling effects in AG mills by 3D DEM. Miner. Eng., 17, 1135–1142.
  • ABD EL-RAHMAN, M.K., MISHRA, B.K., RAJAMANI, R.K., 2001. Industrial tumbling mill power prediction using the discrete element method. Miner. Eng., 14, 1321–1328.
  • FARZANEGAN, A., ARABZADEH, B., HASANZADEH, V., 2012. Back-calculation of mechanical parameters of shell and balls materials from DEM simulations, 3, 33–40.
  • FRANKE, J., CLEARY, P.W., SINNOTT, M.D., 2015. How to account for operating condition variability when predicting liner operating life with DEM – A case study. Miner. Eng., 73, 53–68.
  • FUERSTENAU, D.W., LUTCH, J.J., DE, A., 1999. The effect of ball size on the energy efficiency of hybrid high-pressure roll mill/ball mill grinding. Powder Technol., 105, 199–204.
  • GENG, F., GANG, L., WANG, Y., LI, Y., YUAN, Z., 2016. Numerical investigation on particle mixing in a ball mill. Powder Technol., 292, 64–73.
  • GHAYOUR, H., ABDELLAHI, M., BAHMANPOUR, M., 2016. Optimization of the high energy ball-milling: Modeling and parametric study. Powder Technol., 291, 7–13.
  • GOVENDER, N., RAJAMANI, R.K., KOK, S., WILKE, D.N., 2015. Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Miner. Eng., 79, 152–168.
  • GUERRERO, P.K., ARBITER, N., 1960. Tumbling mill power at cataracting speeds. AIME Trans, 217, 73–87.
  • HLUNGWANI, O., RIKHOTSO, J., DONG, H., MOYS, M.H., 2003. Further validation of DEM modeling of milling: effects of liner profile and mill speed. Miner. Eng., 16, 993–998.
  • HOGG, R., FUERSTENAU, D.W., 1972. Power relationships for tumbling mills. Trans. SME-AIME, 252, 418–423.
  • HOYER, D.I., 1999. The discrete element method for fine grinding scale-up in Hicom mills. Powder Technol., 105, 250–256.
  • INOUE, T., OKAYA, K., 1996a. Grinding mechanism of centrifugal mills—a simulation study based on the discrete element method. Int. J. Miner. Process., 44–45, 425–435.
  • INOUE, T., OKAYA, K., 1996B. Grinding mechanism of centrifugal mills - a simulation study based on the discrete element method. Powder Technol., 45–45, 425–435.
  • INOUE, T., OKAYA, K., 1995. Analysis of grinding actions of ball mills by discrete element method. Proc. XIX Int. Min. Proc. Congress. Soc. Min., Metall. Explor. vol. 1, pp. 191–196.
  • JING, L., HUDSON, J.A., 2002. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci., 39, 409–427.
  • JONSÉN, P., PÅLSSON, B.I., STENER, J.F., HÄGGBLADA, H., 2014. A novel method for modelling of interactions between pulp, charge and mill structure in tumbling mills. Miner. Eng., 63, 65–72.
  • JONSÉN, P., STENER, J.F., PÅLSSON, B.I., HÄGGBLAD, H., 2015. Validation of a model for physical interactions between pulp , charge and mill structure in tumbling mills. Miner. Eng., 73, 77–84.
  • KABEZYA, K., MOTJOTJI, H., 2015. Material Science & Engineering The Effect of Ball Size Diameter on Milling Performance. J. Mater. Sci. Eng., 4, 4–6.
  • KALALA, J.T., BREETZKE, M., MOYS, M.H., 2008. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the Discrete Element Method (DEM). Int. J. Miner. Process., 86, 33–39.
  • KALALA, J.T., BWALYA, M.M., MOYS, M.H., 2005. Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part I: DEM validation. Miner. Eng., 18, 1386–1391.
  • KALALA, J.T., MOYS, M.H., 2004. Discrete element method modelling of liner wear in dry ball milling. J. South African Inst. Min. Metall., 104, 597–602.
  • KATUBILWA, F.M., MOYS, M.H., 2009. Effect of ball size distribution on milling rate. Miner. Eng., 22, 1283–1288.
  • KHANAL, M., MORRISON, R., 2008. Discrete element method study of abrasion. Miner. Eng. 21, 751–760.
  • KIANGI, K., POTAPOV, A., MOYS, M., 2013. DEM validation of media shape effects on the load behaviour and power in a dry pilot mill. Miner. Eng., 46–47, 52–59.
  • MAGDALINOVIC, N., TRUMIC, M., TRUMIC, M., ANDRIC, L., 2012. The optimal ball diameter in a mill. Physicochem. Probl. Miner. Process., 48, 329–339.
  • MAKOKHA, A.B., MOYS, M.H., BWALYA, M.M., KIMERA, K., 2007. A new approach to optimising the life and performance of worn liners in ball mills: Experimental study and DEM simulation. Int. J. Miner. Process., 84, 221–227.
  • MAYANK, K., MALAHE, M., GOVENDER, I., MANGADODDY, N., 2015. Coupled DEM-CFD model to predict the tumbling mill dynamics. Procedia IUTAM, 15, 139–149.
  • MISHRA, B.K., 2003a. A review of computer simulation of tumbling mills by the discrete element method: Part I — contact mechanics. Int. J. Miner. Process, 71, 73–93.
  • MISHRA, B.K., 2003B. A review of computer simulation of tumbling mills by the discrete element method Part II — Practical applications. Int. J. Miner. Process., 71, 95–112.
  • MISHRA, B.K., MURTY, C.V.R., 2001. On the determination of contact parameters for realistic DEM simulations of ball mills. Powder Technol., 115, 290–297.
  • MISHRA, B.K., RAJAMANI, R.K., 1994. Simulation of charge motion in ball mills. Part 1: experimental verifications. Int. J. Miner. Process., 40, 171–186.
  • MISHRA, B.K., RAJAMANI, R.K., 1992. The discrete element method for the simulation of ball mills. Appl. Math. Model., 16, 598–604.
  • MONAMA, G.M., MOYS, M.H., 2002. DEM modelling of the dynamics of mill startup. Miner. Eng., 15, 487–492.
  • MORRELL, S., 1992. Prediction of grinding-mill power. Inst. Min. Metall. Trans. Sect. C. Miner. Process. Extr. Metall., 101.
  • NAIK, S., MALLA, R., SHAW, M., CHAUDHURI, B., 2013. Investigation of comminution in a Wiley Mill: Experiments and DEM Simulations. Powder Technol., 237, 338–354.
  • NIEROP, M.A. VAN, GLOVER, G., HINDE, A.L., MOYS, M.H., 2001. A discrete element method investigation of the charge motion and power draw of an experimental. Int. J. Miner. Process., 61, 77–92.
  • POWELL, M.S., MCBRIDE, A.T., 2004. A three-dimensional analysis of media motion and grinding regions in mills. Miner. Eng., 17, 1099–1109.
  • POWELL, M.S., NURICK, G.N., 1996. A study of charge motion in rotary mills Part 1—extension of the theory. Miner. Eng., 9, 259–268.
  • POWELL, M.S., WEERASEKARA, N.S., COLE, S., LAROCHE, R.D., FAVIER, J., 2011. DEM modelling of liner evolution and its influence on grinding rate in ball mills. Miner. Eng., 24, 341–351.
  • RADISZEWSKI, P., 1999. Comparing three DEM charge motion models. Miner. Eng., 12, 1501–1520.
  • RAJAMANI, R.K., 2000. Discrete element analysis of tumbling mills. Powder Technol., 109, 105–112.
  • RAJAMANI, R.K., MISHRA, B.K., 1996. Dynamics of ball and rock charge in SAG mills. ln Proceedings of an International conference on Autogenous and Semiautogenous Grinding Technology, Eds: Mular, A., Barratt, D., and Knight, D., held in Vancouver, B.C., Canada, Vol. 1, October 6-9, 1996, pp. 700-712.
  • SANTHANAM, P.R., ERMOLINE, A., DREIZIN, E.L., 2013. Discrete element model for an attritor mill with impeller responding to interactions with milling balls. Chem. Eng. Sci., 101, 366–373.
  • SINNOTT, M., CLEARY, P.W., MORRISON, R., 2006. Analysis of stirred mill performance using DEM simulation: Part 1 – Media motion, energy consumption and collisional environment. Miner. Eng., 19, 1537–1550.
  • SUN, Y.I., DONG, M., MAO, Y., FAN, D., 2009. Analysis on grinding media motion in ball mill by discrete element method. Manuf. Eng. Qual. Prod. Syst., 1, 227–231.
  • VENUGOPAL, R., RAJAMANI, R.K., 2001. 3D simulation of charge motion in tumbling mills by the discrete element method. Powder Technol., 115, 157–166.
  • WALTON, O.R., 1994. Numerical simulation of inelastic frictional particle– particle interaction. Chapter 25, In: Roco, M.C. (Ed.), Particulate two-phase flow, pp. 884–911.
  • WANG, M.H., YANG, R.Y., YU, A.B., 2012. DEM investigation of energy distribution and particle breakage in tumbling ball mills. Powder Technol., 223, 83–91.
  • WEERASEKARA, N.S., LIU, L.X., POWELL, M.S., 2016. Estimating energy in grinding using DEM modelling. Miner. Eng., 85, 23–33.
  • WEERASEKARA, N.S., POWELL, M.S., CLEARY, P.W., TAVARES, L.M., EVERTSSON, M., MORRISON, R.D., QUIST, J., CARVALHO, R.M., 2013. The contribution of DEM to the science of comminution. Powder Technol., 248, 3–24.
  • YE, X., BAI, Y., CHEN, C., CAI, X., FANG, J., 2015. Analysis of dynamic similarity and energy-saving mechanism of the grinding process in a horizontal planetary ball mill. Adv. Powder Technol., 26, 409–414.
  • ZHANG, J., BAI, Y., DONG, H., WU, Q., YE, X., 2014. Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Adv. Powder Technol., 25, 983–990.
  • ZHONG, W., YU, A., LIU, X., TONG, Z., ZHANG, H., 2016. DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technol., 302, 108–152.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93fa1a86-0d31-4578-b204-e034bcc774a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.