PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of transparent polysiloxane coatings on a glass support via the sol-gel dip coating technique and the effect of their hydrophobization with hexamethyldisilazane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed at synthesis, preparation, and physicochemical properties investigation of undoped polysiloxane-based coatings deposited on the glass supports. The other goal was to test the effectiveness of their hydrophobization with hexamethyldisilazane at an elevated temperature using a bubbler. The coatings were obtained in a sol-gel process by acid-assisted hydrolysis of tetraethoxysilane and they were applied to the glass supports using the dip coating technique with various withdrawal speeds. The synthesized composition was scanned using TurbiscanLAB and its particle size was determined by means of the dynamic light scattering technique. The obtained surfaces were examined based on the water wettability measurements, photoacoustic spectroscopy, and transmittance measurements. It was found that the stability of the sol did not change during the dip-coating. Smooth, homogeneous, uniform, hydrophobic, and transparent coatings on the glass supports were obtained. Their wettability was determined by the contact angle in the range from 83.5 to 95.2 degrees and very low contact angle hysteresis. The hydrophobic effect obtained by modification with hexamethyldisilazane appears to be permanent – the contact angles do not change significantly after 7 days. The synthesized sol composition appears to be a good starting point for its chemical and physical modification for hydrophobicity increase and surface properties modification. Moreover, the hydrophobization of the coatings with hexamethyldisilazane at an elevated temperature using the bubbler did not have the desired effect.
Słowa kluczowe
Rocznik
Strony
76--88
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
Bibliografia
  • BORMASHENKO, E., 2013. Wetting of real solid surfaces: new glance on well-known problems. Colloid Polym. Sci. 291, 339-342.
  • BORMASHENKO, E., 2020. Variational framework for defining contact angles: a general thermodynamic approach. J. Adhes. Sci. Technol. 34(2), 219-230.
  • CAI, S., ZHANG, Y., ZHANG, H., YAN, H., LU, H., JIANG, B., 2014. Sol-Gel Preparation of Hydrophobic Silica Antireflective Coatings with Low Refractive Index by Base/Acid Two-Step Catalysis. ACS Appl. Mater. Interfaces 6(14), 11470-11475.
  • CAPELETTI, L.B., ZIMNOCH, J.H., 2016. Fourier transform infrared and Raman characterization of silica-based materials, in Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. IntechOpen, London, UK, https://doi.org/10.5772/64477.
  • CARTER, S.F., FRANCE, P.W., 1983. Drawing induced absorption loss in multicomponent glass fibres. J. Non-Cryst. Solids 58(1), 47-55.
  • CHODKOWSKI, M., TERPIŁOWSKI, K., GONCHARUK, O., 2019. Surface properties of the doped silica hydrophobic coatings deposited on plasma activated glass supports. Physicochem. Probl. Miner. Process. 55(6), 1450-1459.
  • DELLA VOLPE, C., MANIGLIO, D., SIBONI, S., MORRA. M., 2001. An Experimental Procedure to Obtain the Equilibrium Contact Angle from the Wilhelmy Method. Oil & Gas Science and Technology − Revue de IFP Energies Nouvelles 56(1), 9-22.
  • DRELICH, J.W., BOINOVICH, L., CHIBOWSKI, E., DELLA VOLPE, C., HOŁYSZ, L., MARMUR, A., SIBONI, S., 2020. Contact angles: history of over 200 years of open questions. Surf. Innov. 8(1-2), 3-27.
  • FIDALGO, A., ILHARCO, L.M., 2004. Chemical Tailoring of Porous Silica Xerogels: Local Structure by Vibrational Spectroscopy. Chemistry - A European Journal 10, 392-398.
  • FIGUS, C., PATRINI, M., FLORIS, F., FORNASARI, L., PELLACANI, P., MARCHESINI, G., VALSESIA, A., ARTIZZU, F., MARONGIU, D., SABA, M., MARABELLI, F., MURA, A., BONGIOVANNI, G., QUOCHI, F., 2015. Synergic combination of the sol-gel method with dip coating for plasmonic devices. Beilstein J. Nanotechnol. 6, 500-507.
  • GUN'KO, V.M., VEDAMUTHU, M.S., HENDERSON, G.L., BLITZ, J.P., 2000. Mechanism and Kinetics of Hexamethyldisilazane Reaction with a Fumed Silica Surface. J. Colloid Interface Sci. 228(1), 157-170.
  • IBRAHIM, S., SULTAN, M., 2020. Superhydrophobic Coating Polymer/Silica Nanocomposites: Part I Synthesis and Characterization as Eco-Friendly Coating. Silicon 12, 805-811.
  • KUMAR, V., 2012. Optical and invitro bioactive properties of sodium silicate glasses. Indian J. Pure Appl. Phys. 50, 335- 338.
  • LAUNER, P., ARKLES, B., 2013. Infrared Analysis of Organosilicon Compounds, in: Silicon Compounds: Silanes & Silicones. Gelest Inc., Morrisville, USA.
  • LEGGE, C.J., COLLEY, H.E., LAWSON, M.A., RAWLINGS, A.E., 2019. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J. Oral Pathol. Med. 48, 803-809.
  • LI, Y., ZHANG, L., LI, C., 2020. Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles. J. Colloid Interface Sci. 559, 273-281.
  • LI, Z., 2009. Critical particle size where the Stokes-Einstein relation breaks down. Phys. Rev. E 80, 061204.
  • MONTES RUIZ-CABELLO, F.J., RODRÍGUEZ-VALVERDE, M.A., CABRERIZO-VÍLCHEZ, M.A., 2014. Equilibrium contact angle or the most-stable contact angle?. Adv. Colloid Interface Sci. 206, 320-327.
  • OLENYCH, I., AKSIMENTYEVA, O., MONASTYRSKII, L., HORBENKO, Y., PARTYKA, M., 2017. Electrical and Photoelectrical Properties of Reduced Graphene Oxide—Porous Silicon Nanostructures. Nanoscale Res. Lett. 12, 272.
  • POLOWCZYK, I., BASTRZYK, A., KOŹLECKI, T., SADOWSKI, Z., 2015. Stability of Three-Phase Water-Particle-Oil Systems. Chem. Eng. Technol. 38(4), 715-720.
  • PROTSAK, I., PAKHLOV, E., TERTYKH, V., LE, Z., DONG, W., 2018. A New Route for Preparation of Hydrophobic Silica Nanoparticles Using a Mixture of Poly(dimethylsiloxane) and Diethyl Carbonate. Polymers 10(2), 116.
  • RUBIO, F., RUBIO, J., OTEO, J.L., 1998. A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS). Spectrosc. Lett. 31(1), 199-219.
  • SADOWSKI, Z., BARANSKA, J., PAWLOWSKA, A., 2018. Surface properties of neutral components in copper column bioleaching of black shale samples. Physicochem. Probl. Miner. Process. 54(4), 1146-1151.
  • SAIDI, M.Z., PASC, A., EL MOUJAHID, C., CANILHO, N., BADAWI, M., DELGADO-SANCHEZ, C., CELZARD, A., FIERRO, V., PEIGNIER, R., KOUITAT-NJIWA, R., AKRAM, H., CHAFIK, T., 2020. Improved tribological properties, thermal and colloidal stability of poly-α-olefins based lubricants with hydrophobic MoS2 submicron additives. J. Colloid Interface Sci. 562, 91-101.
  • SAN VICENTE, G., BAYÓN, R., GERMÁN, N., MORALES, A., 2011. Surface modification of porous antireflective coatings for solar glass covers. J. Sol. Energy 85(4), 676-680.
  • SEGUIN, K., DALLAS, A., WEINECK, G., 2008. Rationalizing the mechanism of HMDS degradation in air and effective control of the reaction byproducts, https://doi.org/10.1117/12.772998.
  • SILVERIO, V., A.G. CANANE, P., CARDOSO, S., 2019. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids Surf. A Physicochem. Eng. Asp. 570, 210-217.
  • TADMOR, R., 2004. Line Energy and the Relation between Advancing, Receding, and Young Contact Angles. Langmuir 20(18), 7659-7664.
  • Tao, Ch., Zhang, L., 2020. Fabrication of multifunctional closed-surface SiO2-TiO2 antireflective thin films. Colloids Surf. A Physicochem. Eng. Asp. 585, 124045.
  • WIŚNIEWSKA, M., TERPIŁOWSKI, K., CHIBOWSKI, S., URBAN, T., ZARKO, V.I., GUN’KO, V. M., 2013. Stability of Colloidal Silica Modified by Macromolecular Polyacrylic Acid (PAA) − Application of Turbidymetry Method. J. Macromol. Sci. A 50(6), 639-643.
  • YANG, J., LI, J., XU P., CHEN, B., 2020. Robust and transparent superoleophobic coatings from one-step spraying of SiO2@fluoroPOS. J. Sol-Gel Sci. Technol. 93, 79-90.
  • YOUNG, T., 1805. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65-87.
  • YUAN, J., YAN, S., ZHANG, X., 2020. Superhydrophilic antifogging broadband antireflective coatings with worm-like nanostructures fabricated by one dip-coating method and calcination. Appl. Surf. Sci. 506, 144795.
  • YUE, D., FENG, Q., HUANG, X., ZHANG, X., CHEN, H., 2019. In Situ Fabrication of a Superhydrophobic ORMOSIL Coating on Wood by an Ammonia-HMDS Vapor Treatment. Coatings 9(9), 2079-6412.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93f04919-74a6-4526-a64c-70911571c66d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.