PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of silver nanoparticles by aqueous extract of Zingiber officinale and their antibacterial activities against selected species

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silver nanoparticles have special plasmonic and antibacterial characteristics that make them efficient in a variety of commercial medical applications. According to recent research, chemically synthesized silver nanoparticles are harmful even in low concentrations. It was crucial to identify appropriate synthesis methods that may have low costs and be nontoxic to the environment. Zingiber officinale (ginger) extracts used to prepare silver nanoparticles were inexpensive and environmentally friendly, and the best physicochemical characteristics were analyzed. Silver nanoparticles were characterized by using UV-visible spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The surface Plasmon resonance peak at 425 nm was observed using UV-Visible spectroscopy. Scanning electron microscopy observed that the nanoparticles were spherical and ranged in size from 5 to 35 nm. The XRD pattern values of 2θ: 38.2° , 46.3° , and 64.58° are used to determine the planes (111), (200), and (220). The silver nanoparticle’s existence was verified by the face-centered cubic (FCC). Silver nanoparticles were found to have antibacterial efficacy against gram-positive Staphylococcus and gram-negative bacteria such as Pseudomonas aeruginosa, Klebsiella Aerogenes, Salmonella, Staphylococcus and Escherichia coli. The antibacterial activity of silver nanoparticles was observed using the agar well diffusion (AWD) method at three different concentrations (100 μg/ ml, 75 μg/ml, and 50 μg/ml). The zone of inhibition measured against the bacterial strains pseudomonas Aeruginosa, Klebsiella aerogenes, Escherichia coli, Salmonella and Staphylococcus which were (18.4±1.25 mm, 16.9±0.74 mm, 14.8±1.25 mm), (16.8±0.96 mm, 14.6±0.76 mm, 14.0±1.15 mm), (19.7±0.76 mm, 18.2±0.66 mm, 15.4±1.15 mm), (16.6±0.67 mm, 14.2±0.23 mm, 12.8±0.78 mm) and (12±0.68 mm, 10±0.20 mm, 08±0.15 mm). These nanoparticles’ potent antibacterial properties may enable them to be employed as nanomedicines for a variety of gramnegative bacterial illness treatments.
Rocznik
Strony
23--30
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wz.
Twórcy
  • Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road Lahore
  • Center of Excellence in Solid State Physics, The University of Punjab Lahore
  • Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road Lahore
  • Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper
  • Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper
autor
  • Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road Lahore
autor
  • Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road Lahore
autor
  • Department of Agriculture, University of Ioannina, 47100 Arta, Greece
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Bibliografia
  • 1. Aziz, T., Nadeem, A.A., Sarwar, A., Perveen, I., Hussain, N., Khan, A.A., Daudzai, Z., Cui, H. & Lin, L. (2023). Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines, 11, 354. DOI: 10.3390/biomedicines11020354.
  • 2. Palei, N.N. (2020). Green synthesis of silver nanoparticles using leaf extract of Lantana camara and its antimicrobial activity. Int. J. Green. Pharm. 14, 1–7. DOI: 10.22377/ijgp.v14i02.2878.
  • 3. Gogoi, B., Kumar, R., Upadhyay, J. & Borah, D. (2020). Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens. SN Appl. Sci. 2, 1–7. DOI: 10.1007/s42452-020-03529-w.
  • 4. Ajitha, B., Reddy, Y.A.K. & Reddy, P.S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng., 2015, 49, 373–381. DOI: 10.1016/j.msec.2015.01.035.
  • 5. Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A. & Rai, M. (2014). Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 103, 1931–1944. DOI: 10.1016/j.msec.2015.01.035.
  • 6. Namdev, Nangare, S. & Onkar, Patil, P. (2020). Green Synthesis of Silver Nanoparticles: An Eco-Friendly Approach. Nano Biomed. Engin. 12(4), 281–296. DOI: 10.5101/nbe.v12i4.p281-296.
  • 7. Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makh-doom, S.I., Aziz, T., Mohamed, A.A., Sameeh, M.Y., Alruways, M.W., Dablool, A.S., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes 10, 1521. DOI: 10.3390/pr10081521.
  • 8. Naveed, M., Bukhari, B., Aziz, T., Zaib, S., Mansoor, M.A., Khan, A.A., Shahzad, M., Dablool, A.S., Alruways, M.W., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Anti-proliferative Activity via Mathematical Approaches. Molecules, 27, 4226. DOI: 10.3390/molecules27134226.
  • 9. Hayat, P., Khan, I., Rehman, A., Jamil, T., Hayat, A., Rehman, M.U., Ullah, N., Sarwar, A., Alharbi, A.A., Dablool, A.S., Daudzai, Z., Alamri, A.S., Alhomrani, M. & Aziz, T. (2023). Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules, 28, 637. DOI: 10.3390/molecules28020637.
  • 10. Khan, J., Khurshid, S., Sarwar, A., Aziz, T., Naveed, M., Ali, U., Makhdoom, S.I., Nadeem, A.A., Khan, A.A., Sameeh, M.Y., Alharbi, A.A., Filimban, F.Z., Rusu, A.V, Göksen, G. & Trif, M. (2022). Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles— A Sustainable Approach towards Food Safety. Sustainability, 14, 14255. DOI: 10.3390/su142114255.
  • 11. Saleem, A., Afzal, M., Naveed, M., Makhdoom, S.I., Mazhar, M., Aziz, T., Khan, A.A., Kamal, Z., Shahzad, M., Alharbi, M. & Alshammari, A. (2022). HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules, 27, 8512. DOI: 10.3390/molecules27238512.
  • 12. Sharma, N.K., Vishwakarma, J., Rai, S., Alomar, T.S., AlMasoud, N. & Bhattarai, A. (2022) Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness ACS Omega 7, 27004−27020.
  • 13. Ahmad, B., Muhammad Yousafzai, A., Maria, H., Khan, A.A., Aziz, T., Alharbi, M., Alsahammari, A. & Alasmari, A.F. (2023). Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations, 10, 182. DOI: 10.3390/separations10030182.
  • 14. Faisal, S., Shah, S.A., Shah, S., Akbar, M.T., Jan, F., Haq, I., Baber, M.E., Aman, K., Zahir, F., Bibi, F., Syed, F., Iqbal, M., Jawad, S.M. & Salman, S. (2020). In Vitro Biomedical and Photo-Catalytic Application of Bio-Inspired Zingiber officinale Mediated Silver Nanoparticles. J. Biomed. Nanotechnol, 1, 16(4), 492–504. DOI: 10.1166/jbn.2020.2918.
  • 15. Kirdat, P.N., Dandge, P.B., Hagwane, R.M., Nikam, A.S., Mahadik, S.P. & Jirange, S.T. (2021). Synthesis and characterization of ginger (Z. officinale) extract mediated iron oxide nanoparticles and its antibacterial activity. Mater. Today Proc., 43(4), 2826–2831. DOI: 10.1016/j.matpr.2020.11.422.
  • 16. Akintelu, S.A., Olugbeko, S.C., Folorunso, A.S., Oyebamiji, A.K. & Folorunso, F.A. (2021). Potentials of phytosynthesized silver nanoparticles in biomedical fields: a review. International Nano Letters, 11(3), 273–293. DOI: 10.1007/s40089-021-00341-1.
  • 17. Othman, A.M., Elsayed, M.A., Al-Balakocy, N.G., Hassan, M.M. & Elshafei, A.M. (2019). Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J. Genetic Engin. Biotech. 17(1), 1–13. DOI: 10.1186/s43141-019-0008-1.
  • 18. Rauf, B., Alyasi, S., Zahra, N., Ahmad, S., Sarwar, A., Aziz, T., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Evaluating the influence of Aloe barbadensis extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats through in vivo and in silico approaches. Acta Biochim. Pol., 17, 70(2), 425–433. DOI: 10.18388/abp.2020_6705.
  • 19. Badarudheen, R., Rajalakshmi, G. & Kattali, M. (2022). In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Alpinia calcarata.
  • 20. Syed, W.A.S., Muhammad, S.A, Mujaddad U.R., Azam, H., Abid, S., Tariq, A., Alharbi, M., Alshammari, A. & Alas-mari, A.F. (2023). “In-Vitro Evaluation of Phytochemicals, Heavy Metals and Antimicrobial Activities of Leaf, Stem and Roots Extracts of Caltha palustris var. alba “J. Chil. Chem. Soc., 68(1), 5807–5812. https://www.jcchems.com/index.php/JCCHEMS/article/view/2306/590.
  • 21. Gul, R., Qureshi, R., Ali, H., Bashir, A., Ayaz, A.K., Tariq, A., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Phytochemical, Antimicrobial, Radical Scavenging and In-vitro biological activities of Teucrium stocksianum leaves”. J. Chil. Chem. Soc., 68,(1) 5748–5754. https://www.jcchems.com/index.php/JCCHEMS/article/view/2295/582
  • 22. Rizwana, H., Bokahri, N.A., S. Alkhattaf, F., Albasher, G. & A. Aldehaish, H. (2021). Antifungal, antibacterial, and cytotoxic activities of silver nanoparticles synthesized from aqueous extracts of mace-arils of Myristica fragrans. Molecules, 26(24), 7709. DOI: 10.3390/molecules26247709.
  • 23. Reda, M., Ashames, A., Edis, Z., Bloukh, S., Bhandare, R. & Abu Sara, H. (2019). Green synthesis of potent antimicrobial silver nanoparticles using different plant extracts and their mixtures. Processes, 7(8), 510. DOI: 10.3390/pr7080510.
  • 24. Lekha, D.C., Shanmugam, R., Madhuri, K., Dwarampudi, L.P., Bhaskaran, M., Kongara, D. & Krishnaraj, R. (2021). Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: recent advances and future aspects. J. Nanomat., 2021. DOI: 10.1155/2021/4401829.
  • 25. Corciova, A., Mircea, C., Burlec, A.F., Cioanca, O., Tuchilus, C., Fifere, A. & Hancianu, M. (2019). Antioxidant, antimicrobial and photocatalytic activities of silver nanoparticles obtained by bee propolis extract assisted biosynthesis. Farmacia, 67(3), 482–489. DOI: 10.31925/farmacia.2019.3.16.
  • 26. Alkhathlan, A.H., AL-Abdulkarim, H.A., Khan, M., Khan, M., AlDobiy, A., Alkholief, M. & Siddiqui, M.R.H. (2020). Ecofriendly Synthesis of Silver Nanoparticles Using Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin) and Comparison of Their Antibacterial Potential. Sustainability, 12(24), 10523. DOI: 10.3390/su122410523.
  • 27. Thirumagal, K., Jeevitha, M., Rajeshkumar, S. & Jayaraman, S. (2021). Controlling Oral Pathogens using Ficus Benghalensis Mediated Silver Nanoparticles. DOI: 10.9734/JPRI/2021/v33i60B34591.
  • 28. Javed, B., Nadhman, A. & Zia U.M. (2020). Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens Phyto-synthesized by Mentha longifolia. Mater. Res. Express, 7 085406. DOI: 10.1088/2053-1591/abaf19.
  • 29. Hazim, I., Abd, K.Y. & Abachi, F.T. (2020). Newly formulated extract of Zingiber officinale as reducing agent for Silver nitrate Nanoparticals. Pharma Innov. J., 9(5), 232–238. https://www.thepharmajournal.com/archives/2020/vol9issue5/PartE/9-3-74-839.pdf
  • 30. Raafat, M., El-Sayed, A.S. & El-Sayed, M.T. (2021). Biosynthesis and anti-mycotoxigenic activity of Zingiber officinale roscoe-derived metal nanoparticles. Molecules, 26(8), 2290. DOI: 10.3390/molecules26082290.
  • 31. Mohapatra, B., Kumar, D., Sharma, N. & Mohapatra, S. (2019). Morphological, plasmonic and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract. J. Phys. Chem. Solids, 126, 257–266. DOI: 10.1016/j.jpcs.2018.11.020.
  • 32. Mathew, S., Prakash, A. & Radhakrishnan, E.K. (2018). Sunlight mediated rapid synthesis of small size range silver nanoparticles using Zingiber officinale rhizome extract and its antibacterial activity analysis. Inorganic Nano-Metal Chem. 48(2), 139–145. DOI: 10.1080/24701556.2017.1373295.
  • 33. Yang, N., Li, F., Jian, T., Liu, C., Sun, H., Wang, L. & Xu, H. (2017). Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. Acta Ocean. Sinica, 36(12), 95–100. DOI: 10.1007/s13131-017-1099-7.
  • 34. Menon, S., K.S, S.D., Agarwal, H. & Shanmugam, V.K. (2019). Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and antioxidant activities. Coll. Interf. Sci. Comm. 29, 1–8. DOI: 10.1016/j.colcom.2018.12.004.
  • 35. Kazemipour, N., Moradi, S., Sepehrimanesh, M. & Nazifi, S. (2018). Evaluation of the effects of alcoholic extract of ginger on renal cytotoxicity of silver nanoparticles: A Mus musculus model. Comp. Clin. Pathology, 27(6), 1587–1593. DOI: 10.1007/s00580-018-2778-2.
  • 36. Mohammadi, G., Rashidian, G., Hoseinifar, S.H., Naserabad, S.S. & Van Doan, H. (2020). Ginger (Zingiber officinale) extract affects growth performance, body composition, haematology, serum and mucosal immune parameters in common carp (Cyprinus carpio). Fish & Shellfish Immun. 99, 267–273. DOI: 10.1016/j.fsi.2020.01.032.
  • 37. Ramzan, M. & Zeshan, B. (2023). Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet. Molecules, 28(1), 409. DOI: 10.3390/molecules28010409.
  • 38. Abdussalam-Mohammed, W., Mohamed, L., Abraheem, M.S., Mansour, M.M. & Sherif, A.M. (2023). Biofabrication of Silver Nanoparticles Using Teucrium Apollinis Extract: Characterization, Stability, and Their Antibacterial Activities. Chemistry, 5(1), 54–64. DOI: 10.3390/chemistry5010005.
  • 39. Vijaya, J.J., Jayaprakash, N., Kombaiah, K., Kaviyarasu, K., Kennedy, L.J., Ramalingam, R.J. & Maaza, M. (2017). Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies. J. Photochem. Photobiol. B: Biology, 177, 62–68. DOI: 10.1016/j.jphotobiol.2017.10.007.
  • 40. Roja, B. (2019). Green Synthesis of Silver Nanoparticles Using Ginger Extract and Its Antioxidant (In Vitro) And Anticancer (In-silico) Study. Scholar: National School of Leadership, 8(2.2). DOI: 10.1049/iet-nbt.2018.5146.
  • 41. Zhang, B., Liu, Y., Wang, H., Liu, W., Cheong, K.L. & Teng, B. (2021). Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. LWT, 150, 111961. DOI: 10.1016/j.lwt.2021.111961.
  • 42. Wang, Y., O’Connor, D., Shen, Z., Lo, I. M., Tsang, D. C., Pehkonen, S. & Hou, D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Cleaner Prod. 226, 540–549. DOI: 10.1016/j.jclepro.2019.04.128.
  • 43. Korni, F.M., El-Ela, F.I.A., Moawad, U.K., Mahmoud, R.K. & Gadelhak, Y.M. (2021). Prevention of Edwardsiellosis in Clarias gariepinus using ginger and its nanoparticles with a reference to histopathological alterations. Aquaculture, 539, 736603. DOI: 10.1016/j.aquaculture.2021.736603.
  • 44. Said, M.S. & Abdelaal, A.A.A. (2020). Comparative effect of Ginger extract nanoparticles with some pesticides on Pink bollworm, Pectinophora gossypiella (Saunders)(Lepidoptera: Gelechiidae). Inter. J. Sci. Res. Sust. Develop. 3(3), 1–20. https://ijsrsd.journals.ekb.eg/article_129594_7ed56f72735dd3c38c9f921f2f437485.pdf
  • 45. Xie, J., Zuo, Y., Lv, J., Jiang, T., Liu, C., Xu, H & Jin, J. (2018). Bio-mediated synthesis and antibacterial activity against aquatic pathogens of silver nanoparticles decorated titania nanosheets in dark and under solar-light irradiation. Mater. Technol. 33(8), 532–542. DOI: 10.1080/10667857.2018.1480584.
  • 46. Sukweenadhi, J., Setiawan, K.I., Avanti, C., Kartini, K., Rupa, E.J. & Yang, D.C. (2021). Scale-Up of Green Synthesis and Characterization of Silver Nanoparticles Using Ethanol Extract of Plantago major L. Leaf and Its Antibacterial Potential: A Recent Study.South Afric. J. Chem. Eng. 38, 1–8. DOI: 10.1016/j.sajce.2021.06.008.
  • 47. Wisam, J.A. & Haneen, A.J. (2018). A novel study of pH influence on Ag nanoparticles size with antibacterial and antifungal activity using green synthesis. World Scientific News, 97, 139–152. http://www.worldscientificnews.com/wp-content/uploads/2018/02/WSN-97-2018-139-152-1.pdf
  • 48. Rasool, S., Tayyeb, A., Raza, M.A., Ashfaq, H., Perveen, S., Kanwal, Z. & Alomar, S.Y. (2022). Citrullus colocynthis-mediated green synthesis of silver nanoparticles and their anti-proliferative action against breast cancer cells and bactericidal roles against human pathogens. Nanomaterials, 12(21), 3781. DOI: 10.3390/nano12213781.
  • 49. Ranjani, S., Matheen, A., Jenish, A.A. & Hemalatha, S. (2021). Nanotechnology derived natural poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogens. Materials Letters, 304, 130555. DOI: 10.1016/j.matlet.2021.130555.
  • 50. Hasanin, M., Hassan, S.A. & Hashem, A.H. (2021). Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conversion and Biorefinery, 1–14. DOI: 10.1007/s13399-021-01873-4.
  • 51. Sinduja, P., Rajeshkumar, S., Priyadharshini, R. & Roshan, A. (2021). Preparation of Mouth Wash Using Musa sapientum Mediated Silver Nanoparticles and Its Antimicrobial Activity. J. Pharmac. Res. Inter. 177–185. 10.9734/jpri/2021/v33i64A35317.
  • 52. Sumaira, S., Shazia, K, Jahangir K., Razia, B., Abid, S., Tariq, Az., Majid A., Abdulhakeem S.A., Manal Y.S. & Faten Z.F. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Res. Int. 269, 112940. DOI: 10.1016/j.foodres.2023.112940.
  • 53. Chaudhari, A., Kaida, T., Desai, H.B., Ghosh, S., Bhatt, R.P. & Tanna, A.R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098.
  • 54. Ammara, A., Sobia, A., Nureen, Z., Sohail, A., Abid, S., Tariq, A., Naha, M.A., Rewa, S.J., Nouf, S.A.A., Nehad, A.S., Manal, Y.S., Amnah, A.A., Majid, A., Abdulhakeem, S., Anas S.D. & Saad, A. (2023). Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. Europ. Rev. Med. Pharmac. Sci. 27 (12). DOI: 10.1016/j.chphi.2022.100098.
  • 55. Muhammad, W., Naveed, M., Shafiq, U.R., Syeda, I.M., Tariq, A., Metab, A., Abdulrahman A. & Abdullah F.A. (2023). Molecular Characterization of spa, hld, fmhA and lukD genes and Computational Modelling the Multi Drug Resistance of Staphylococcus species through Callindra harrisii Silver Nanoparticles. ACS Omega, 8, 23, 20920–20936. DOI: 10.1021/acsomega.3c01597.
  • 56. Tahir, M.N., Ali, A., Khalid, M., Ashfaq, M., Naveed, M., Murtaza, S., Shafiq, I., Asghar MA., Orfali, R. & Perveen, S. (2023). Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules 27, 28(7), 2967. DOI: 10.3390/molecules28072967.
  • 57. Raza, A.R., Rubab, S.L., Ashfaq, M., Altaf, Y., Tahir, M.N., Rehman, M.F.u., Aziz, T., Alharbi, M. & Alasmari, A.F. (2023). Evaluation of Antimicrobial, Anticholinesterase Potential of Indole Derivatives and Unexpectedly Synthesized Novel Benzodiazine: Characterization, DFT and Hirshfeld Charge Analysis. Molecules 28, 5024. DOI: 10.3390/molecules28135024.
  • 58. Khushnuma S., Tariq A., Ayaz, A.K., Ali M., Shafiq, U.R., Metab, A., Abdulrahman A. & Abdullah, F.A. (2023). Evaluating the In-Vivo effects of Olive Oil, Soya Bean Oil, and Vitamins against Oxidized Ghee Toxicity. Acta Biochim. Pol. 6549 DOI: 10.18388/abp.2020_6549.
  • 59. Tariq, A., Fawad, I., Ayaz, A.K., Shafiq, U.R., Ghazala, Y.Z., Metab, A., Abdulrahman, A. & Abdullah, F.A. (2023). Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annus (sunflower) oil in selected animals. ACTA Biochimica Polonica. DOI: 10.18388/abp.2020_6621.
  • 60. Sana, Shafiq, U.R., Muhammad, Z., Ayaz A.K., Tariq, A., Zafar, I., Waqar, A, Muhammad S., Metab, A., Abdulrahman A. & Abdullah, F.A. (2022). Hepatoprotective Effects of Walnut Oil and Caralluma Tuberculata in Experimentally Induced Liver Toxicity in Selected Animals. Acta Biochim. Pol. 6387, DOI: 10.18388/abp.2020_6387.
  • 61. Hena, Z., Mohsin, S., Shafiq, U.R., Zafar, I., Ayaz, A.K, Tariq, A., Waqar, A, Ghazala, Y.Z., Saeed, A, Muhammad, S., Metab, A. & Abdulrahman, A. (2022). Assessing the effect of walnut (juglans regia) and olive (olea europaea) oil against the bacterial strains found in Gut Microbiome. 24(3). Progress in Nutrition. DOI: 10.23751/pn.v24i3.13311.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93ed97b5-2c65-4573-b6c1-d2909f0ef286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.