Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nitrate(V) ions in surface water and sewage are pollutants, which excessive concentration have a negative impact on aquatic ecosystems. Due to the chemical properties, removal of nitrates from wastewater is a difficult process. In the municipal sector, biological denitrification (activated sludge) is the most commonly used process. However, in the case of industrial wastewater, where inhibiting substances or substances toxic to microorganisms are present in wastewater, it is necessary to use other types of methods. It is possible to distinguish here methods based on physicochemical processes, in particular: physicochemical separation, chemical or electrochemical reduction and oxidation under supercritical conditions. At present, membrane methods and ion exchange processes are used mainly in the industrial sector because of the high knowledge of the technology and the amount of applications used. Intensive studies are also being carried out on methods using chemical reduction processes, where greatest advantage is the ability to transform nitrates to neutral molecular nitrogen.
Czasopismo
Rocznik
Tom
Strony
153--159
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- MSc, PhD student; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100, Gliwice, Poland
autor
- Prof.; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100, Gliwice, Poland
Bibliografia
- [1] Statistical Yearbook of the Republic of Poland 2014, Central Statistical Office, Warsaw, 2014.
- [2] http://encyklopedia.pwn.pl/haslo/azotany-V;3872892.html
- [3] Fanning, J. (2000). The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews, 199(1), 159-179.
- [4] Reyter, D., Bélanger, D., & Roué, L. (2010). Nitrate removal by a paired electrolysis on copper and Ti/IrO2 coupled electrodes - Influence of the anode/cathode surface area ratio. Water Research, 44(6), 1918-1926.
- [5] Fan, X., Guan, X., Ma, J., & Ai, H. (2009). Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. Journal of Environmental Sciences, 21(8), 1028-1035.
- [6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698595/
- [7] Nitrates and Nitrites; TEACH Chemical Summary. (2006) U.S. EPA, Toxicity and Exposure Assessment for Children’s Health.
- [8] Fernández-Nava, Y., Marañón, E., Soons, J., & Castrillón, L. (2010). Denitrification of high nitrate concentration wastewater using alternative carbon sources. Journal of Hazardous Materials, 173(1-3), 682-688.
- [9] Perygy A., & Spitsov D. (2011). Application of membrane techniques for municipal wastewater treatment and reuse. Inżynieria Ekologiczna, 24, 107-119.
- [10] Dziubek, A., & Maćkiewicz, J. (2009). Removal of nitrates from water by selective ion exchange. Environment Protection Engineering, 35(1), 171-177.
- [11] Dziewiński J., & Marczak S. (2002). Electrochemical reduction of nitrate in the presence of an amide. United States Patent No.: US 6,436,275 B1.
- [12] Li, M., Feng, C., Zhang, Z., Shen, Z., & Sugiura, N. (2009). Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochemistry Communications, 11(10), 1853-1856.
- [13] Wenliang, G., Naijia, G., & Jixin Titania, C. (2003). Supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Applied Catalysis B: Environmental, 46, 341-351.
- [14] Zhang, J., Hao, Z., Zhang, Z., Yang, Y., & Xu, X. (2010). Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environmental Protection, 88(6), 439-445.
- [15] Hosseini, S. M., Ataie-Ashtiani, B., & Kholghi, M. (2011). Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination, 276(1-3), 214-221.
- [16] Barbusiński, K., & Żołnierczyk, M. (2016). Chemical Reduction Of Nitrates In The Wastewater From 2-EHN Production. Architecture, Civil Engineering, Environment, 9(4), 101-106.
- [17] Wiśniewski J., Różańska A. (2002). Usuwanie azotanów z roztworów wodnych metodą elektrodializy. Ochrona środowiska, 4, 11-15.
- [18] Sieroń, A., & Świderska-Bróż A. (1998). Usuwanie azotanów z wody w procesie wymiany jonowej. Ochrona środowiska, 7(71), 7-9.
- [19] Barrabes, N., Just, J., Dafinov, A., Medina, F., Fierro, J., Sueiras, J., Cesteros, Y. (2006). Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor. The effect of copper nanoparticles. Applied Catalysis B: Environmental, 62(1-2), 77-85.
- [20] Ottley, C. J., Davison, W., & Edmunds, W. M. (1997). Chemical catalysis of nitrate reduction by iron(II). Geochemica Et Cosmochimica Acta, 61(9), 1819-1828.
- [21] Liou, Y., Lo, S., Lin, C., Kuan, W., & Weng, S. (2005). Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, 127(1-3), 102-110.
- [22] Glass, C., & Silverstein, J. (1999). Denitrification of high-nitrate, high-salinity wastewater. Water Research, 33(1), 223-229.
- [23] Chen, Y., Li, C., & Chen, S. (2005). Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere, 59(6), 753-759.
- [24] Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., & Westerhoff, P. (2018). Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 236, 546-568.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93e03b14-2732-4c2c-976d-156c7bf3f3b0