PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel constructions of optical fibers doped with rare – earth ions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the research on rare-earth doped and co-doped optical fibre conducted in the Laboratory of Optical Fiber Technology at the Bialystok University of Technology is presented. Novel active fibre constructions like multicore, helical-core and side detecting ribbon/core optical fibers were developed with a targeted focus into application. First construction i.e. multicore RE doped optical fibers enable supermode generation due to phase - locking of laser radiation achieved in a consequence of exchanging radiation between the cores during the laser action. In the paper a far - field pattern of 19 - core optical fiber-doped with Yb3+ ions, registered in the MOFPA system, showed centrally located peak of relatively high radiation intensity together with smaller side-lobes. Another new construction presented here is helical-core optical fibers with the helix pitch from several mm and the off-set ranging from 10 μm to 200 μm. The properties of helical-core optical fiber co-doped with Nd3+/Yb3+ were also discussed. In the field of sensor applications novel construction of a sidedetecting luminescent optical fiber for an UV sensor application has been presented. The developed optical fiber with an active core/ribbon, made of phosphate glass doped with 0.5 mol% Tb3+ ions, was used as a UV sensing element.
Rocznik
Strony
619--626
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
  • Bialystok University of Technology, 45D Wiejska St., 15- 351 Bialystok, Poland
Bibliografia
  • [1] D. Dorosz, “Special active optical fibres”, Ceramics 110, 25-43 (2010).
  • [2] D. Dorosz, J. Swiderski, and A. Zajac, “Double clad aluminosilicate optical fibre doped with Nd3+ ions”, Eur. Phys. J. Special Topics 154, 51-56 (2008).
  • [3] D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres”, Bull. Pol. Ac.: Tech. 56 (2), 103-111 (2008).
  • [4] A. Zając, D. Dorosz, M. Kochanowicz, M. Skorczakowski, and J. Świderski, “Fibre lasers - conditioning constructional and technological”, Bull. Pol. Ac.: Tech. 58 (4), 491-502 (2010).
  • [5] D. Dorosz, J. Zmojda, M. Kochanowicz, P. Miluski, and J. Dorosz, “Tm3+/Ho3+-doped ASE fibre source for midinfrared sensor applications”, Acta Physica Polonica - A 122 (5), 927-932 (2012).
  • [6] J. Dorosz, “Optical fiber technology”, Ceramics 86, CD-ROM (2005).
  • [7] V. Matejec, I. Kasik, and M. Pospisilova, “Preparation and optical properties of silica optical fibres with an Al2O3 - doped core”, J. Non-Crystalline Solids 192&193, 195-198 (1995).
  • [8] IV. Kityk, J.Wasylak, J. Dorosz, J. Kucharski, and A. Brenierc, “New efficient materials for the luminescence on the base of PbO-Bi2O3-Ga2O3-BaO-Ho3+ glasses”, Materials Letters 51 (3), 194-199 (2001).
  • [9] K. Barczak, T. Pustelny, D. Dorosz, and J. Dorosz, “New optical glasses with high refractive indices for applications in optical current sensors”, Acta Physica Polonica - A 116 (3), 247-249 (2009).
  • [10] L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś- Pawlik, H. Dantanarayana, E. Faber, A.B. Seddon, T.M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad”, Optical Materials 36 (6), 1076-1082 (2014).
  • [11] E. Mura, J. Lousteau, D. Milanese, S. Abrate, and V.M. Sglavo, “Phosphate glasses for optical fibers: Synthesis, characterization and mechanical properties”, J. Non-Crystalline Solids 362, 147-151 (2013).
  • [12] N.N. Elkin, A.P. Napartovich, V.N. Troshchieva, and D.V. Vysotsky, “Diffraction modeling of the multicore fibre amplifier”, J. Lightwave Technology 25 (10), 3072-3077 (2007).
  • [13] X. Zhu, A. Schulzgen, X. Li, H. Li, V. L. Temyanko, J.V. Moloney, and N. Peyghambarian, “Birefringent in-phase supermode operation of a multicore microstructured fibre laser”, Optics Express 15 (16), 10340-10345 (2007).
  • [14] D. Dorosz and M. Kochanowicz, “Model analysis of supermode generation in active 5-core optical fibre”, Opto- Electronics Review 18 (4), 40-45 (2010).
  • [15] Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the talbot effect in a three-mirror cavity”, IEEE J. Quantum Electronics 36, 607-614, (2000).
  • [16] D. Dorosz, M. Kochanowicz, and J. Dorosz, “Multicore optical fibres for an external Talbot cavity”, Acta Physica Polonica - A 116 (3), 298-301 (2009).
  • [17] Li Y. Qiana, D. Lua, D. Fana, and S. Wenb, “Coherent and incoherent combining of fiber array with hexagonal ring distribution”, Optics & Laser Technology 39, 957-963 (2007).
  • [18] Z. Chen, J. Hou, P. Zhou, X. Wang, X. Xu, Z. Jiang, and Z. Liu, “Mutual injection locking and coherent combining of three individual fibre lasers”, Optics Communications 282, 60-63 (2009).
  • [19] M. Kochanowicz, D. Dorosz, and J. Żmojda, “Phase-locking of 7-core Yb3+-doped optical fibre”, Proc. SPIE 7745, 77450M-77450M-10 (2010).
  • [20] J. Świderski, A. Zając, P. Konieczny, and M. Skorczakowski, “Q-switched Nd-doped double-clad fiber laser”, Opto- Electronics Review 13, 187-191 (2005).
  • [21] D. Marcuse, “Radiation loss of a helically deformed optical fiber”, J. Opt. Soc. Am. 66, 1025-1031 (1976).
  • [22] M. Digonet, Rare-Earth-Doped Fiber Lasers and Amplifiers, pp. 131-195, CRC Press Publishers, London, 2001.
  • [23] M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W.A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb3+”, Optical Materials Express 4, 1050-1056 (2014).
  • [24] J. Zmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Upconversion luminescence in Yb3+/Tm3+ doped double clad optical fibre”, Acta Physica Polonica - A 120 (4), 776-781 (2011).
  • [25] M. Kochanowicz, D. Dorosz, J. Zmojda, and J. Dorosz, “Spectroscopic properties of Yb3+/Tb3+ doped germanate glasses”, Acta Physica Polonica - A, 122 (4), 837-840 (2012).
  • [26] M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+”, J. Luminescence 151, 155-160 (2014).
  • [27] J. Zhang, S. Dai, G. Wang, L. Zhang, H. Sun, and L. Hu, “Investigation on upconversion luminescence in Er3+/Yb3+ codoped tellurite glasses and fibers”, Physics Letters A 345, 409-414 (2005).
  • [28] K.T.V. Grattan and T. Sun, “Fibre optic sensor technology: an overview”, Sensors and Actuators A: Physical 82, 40-61 (2000).
  • [29] C. Fitzpatrick, C. O’Donoghue, and E. Lewis, “A novel multipoint ultraviolet optical fibre sensor based on cladding luminescence”, Meas. Sci. Technol. 14 (8), 1477-1483 (2003).
  • [30] A.V. Joža, J.S. Bajić, D.Z. Stupar, M.P. Slankamenac, M. Jelić, and B. ˇZivanov, “Simple and low-cost fiber-optic sensors for detection of UV radiation”, Telfor. J. 4 (2), 133-137 (2012).
  • [31] M. Kochanowicz, D. Dorosz, J. Dorosz, and J. Żmojda, “Phaselocking of optical fibre with hexagonal cores array doped with neodymium”, Proc. SPIE 7721, 772110-772110-9 (2010).
  • [32] P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams”, Optics &Laser Technology 4, 1268-271 (2009).
  • [33] M. Kochanowicz, D. Dorosz, J. Żmojda, and J. Dorosz, “Beam quality of multicore fibre lasers”, Acta Physica Polonica A 118, 1177-1182 (2010).
  • [34] M. Kochanowicz, J. Zmojda, and D. Dorosz, “Fluorosilicate and fluorophosphate superfluorescent multicore optical fibers co-doped with Nd3+/Yb3+”, Optical Fiber Technology 20, 245-249 (2014).
  • [35] M. Kochanowicz, D. Dorosz, and A. Zając, “Phase-locking of 19-core Yb3+ - doped optical fibre”, Bull. Pol. Ac.: Tech. 59 (4), 371-379 (2011).
  • [36] Project “Special optical fibres technology”, No R08 022 02, Bialystok University of Technology 2007-2010, Head of the project - Jan Dorosz.
  • [37] D. Dorosz; M. Kochanowicz; J. Zmojda; and J. Dorosz, “Helical core optical fibre made of Nd3+/Yb3+-doped oxyfluoride silicate glass”, Proc. SPIE 7721, CD-ROM (2010).
  • [38] P. Wang, L.J. Cooper, R.B. Williams, J.K. Sahu, and W.A. Clarkson, “Helical-core ytterbium-doped fibre laser”, Electronics Letters 40 (21), 1325-1326 (2004).
  • [39] F. Wassmann, “Radiation from pulses in helical fibres”, Optics Communications 162 (4), 306-323 (1999).
  • [40] Project “Co-doped optical fiber”, No N N515 512 340, Bialystok University of Technology 2007-2010, Head of the project - Jan Dorosz.
  • [41] M. Kochanowicz, D. Dorosz, J. Zmojda, P. Miluski, and J. Dorosz, “Effect of temperature on upconversion luminescence in Yb3+/Tb3+ co-doped germanate glass”, Acta Physica Polonica A 124 (3), 471-473 (2013).
  • [42] K. Czajkowski, M. Kochanowicz, J. Zmojda, D. Dorosz, T. Ragiń, and P. Miluski, “Effect of temperature on luminescent properties of antimony-silicate glass co-doped with Yb3+ and Tm3+”, Proc. SPIE 8903, 89030G (2013).
  • [43] J. Zmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Upconversion luminescence in Yb3+/Tm3+ doped double clad optical fibre”, Acta Physica Polonica A 120 (4), 776-781 (2011).
  • [44] T. Yamashita and Y. Ohishi, “Spectroscopic properties of Tb3+-Yb3+-codoped borosilicate glasses for green lasers and amplifiers”, Proc. SPIE 6389, 638912 (2006).
  • [45] Y.H. Hong, G.Y. Li, Y.M. Zhang, and Y.M. Yu, “Red and green upconversion luminescence of Gd2O3:Er3+, Yb3+ nanoparticles”, J. Alloys Compd. 456, 247-450 (2008).
  • [46] J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices”, Optical Materials 3, 187-203 (1994).
  • [47] J. Żmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Upconversion energy transfer in Yb3+ /Tm3+ doped tellurite glass”, Proc. SPIE 8010, CD-ROM (2011).
  • [48] N. Kumar Giri, S.B. Rai, and A. Rai “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass”, Spectrochimica Acta Part A 74, 1115-1119 (2009).
  • [49] J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, ”Sidedetecting optical fiber doped with Tb3+ for ultraviolet sensor application”, Fibers 2, CD-ROM (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93d96c1f-b7d9-45fd-acb5-cd554a02c093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.