PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] N. Anand, S. Sankaran, R. Madhavan, S. Suwas, P. Venugopal, J. Mater. Eng. Perform. 24, (1), 517-528 (2015).
  • [2] K. Radwański, Steel Res. Int. 86, (11), 1379-1390 (2015).
  • [3] D. Krizan, B.C. De Cooman, Metall. Mater. Trans. A 45A, 3481-3492 (2014).
  • [4] M. Adamczyk, D. Kuc, E. Hadasik, Arch. Civ. Mech. Eng. 8, (3), 5-13 (2008).
  • [5] A. Kokosza, J. Pacyna, Mater. Sci. Technol. 31, (7), 803-807 (2015).
  • [6] R. A. Mesquita, R. Schneider, K. Steineder, L. Samek, E. Arenholz, Metall. Mater. Trans. A 44, (9), 4015-4019 (2013).
  • [7] M. B. Jabłońska, R. Michalik, Solid State Phenom. 227, 109-112 (2015).
  • [8] A. Grajcar, M. Opiela, G. Fojt-Dymara, Arch. Civ. Mech. Eng. 9, (3), 49-58 (2009).
  • [9] D. Kuc, E. Hadasik, G. Niewielski, I. Schindler, E. Mazancova, S. Rusz, P. Kawulok, Arch. Civ. Mech. Eng. 12, (3), 312-317 (2012).
  • [10] L.A. Dobrzański, A. Grajcar, W. Borek, Mater. Sci. Forum 638-642, 3224-3229 (2010).
  • [11] S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 45, (2), 709-716 (2014).
  • [12] A. Grajcar, R. Kuziak, Adv. Mater. Res. 314-316, 119-122 (2011).
  • [13] A. Grajcar, K. Radwański, H. Krztoń, Solid State Phenom. 203-204, 34-37 (2013).
  • [14] B. Garbarz, B. Niżnik-Harańczyk, Mater. Sci. Technol. 31, (7), 773-780 (2014).
  • [15] E. Skołek. K. Wasiak, W.A. Świątnicki, Mater. Tehnol. 49, 6, 933-939 (2015).
  • [16] K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, ISI J Int. 45, (8), 1194-1200 (2005).
  • [17] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Int. J. Mater. Prod. Tech. 51, (3), 264-280 (2015).
  • [18] H. Jirkova, L. Kucerova, B. Masek, Mater. Sci. Forum 706-709, 2734-2739 (2012).
  • [19] A. Lisiecki, Metals 5, (1), 54-69 (2015).
  • [20] J.H. Park, D.J. Kim, D.J. Min, Metall. Mater. Trans. A 43, 2316-2324 (2012).
  • [21] A. Grajcar, M. Kamińska, U. Galisz, L. Bulkowski, M. Opiela, P. Skrzypczyk, J. Achiev. Mater. Manuf. Eng. 55, (2), 245-255 (2012).
  • [22] M. Opiela, J. Mater. Eng. Perform. 23, (9), 3379-3388 (2014).
  • [23] K. Radwański, A. Wrożyna, R. Kuziak, Mater. Sci. Eng. A 639, 567-574 (2015).
  • [24] A. Grajcar, P. Skrzypczyk, R. Kuziak, K. Gołombek, Steel Res. Int. 85, (6), 1058-1069 (2014).
  • [25] B. Pereda, Z. Aretxabaleta, B. Lopez, J. Mater. Eng. Perform. 24, (3), 1279-1293 (2015).
  • [26] F. Siciliano, L.L. Leduc, Mater. Sci. Forum 500-501, 221-228 (2005).
  • [27] D. Liu, F. Fazeli, M. Militzer, W.J. Poole, Metall. Mater. Trans. A 38A, 894-909 (2007).
  • [28] E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk, M. Pietrzyk, Steel Res. Int. 77, (12), 927-933 (2006).
  • [29] P. Uranga, B. Lopez, J.M. Rodriguez-Ibabe, Steel Res. Int. 78, (3), 199-209 (2007).
  • [30] B. Garbarz, W. Burian, D. Woźniak, Steel Res. Int. Special issue, 1251-1254 (2012).
  • [31] A. Grajcar, P. Skrzypczyk, in: W. Bleck, D. Raabe (Eds.), Proc. of 2nd Int. Conf. on High Manganese Steel, 159-162, Aachen 2014.
  • [32] R.M. Skolly, E.I. Poliak, Mater. Sci. Forum 500-501, 187-194 (2005).
  • [33] E. I. Poliak, D. Bhattacharya, Mater. Sci. Forum 783-786, 3-8 (2014).
  • [34] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren, VE B Deutscher Verlag fur Grundstoffindustrie, Leipzig 1978.
  • [35] V. I. Zjuzin, M. J. Brovman, A. F. Melnikow, Soprotivlenije Deformacii Pro Goracej Prokatke, Metallurgija, Moskva 1964.
  • [36] H. J. Ha, C. J. Park, H. S. Kwon, Scripta Mater. 55, (11), 991-994 (2006).
  • [37] A. Grajcar, W. Kwaśny, J. Achiev. Mater. Manuf. Eng. 54, (2), 168-177 (2012).
  • [38] K. I. Sugimoto, H. Tanino, J. Kobayashi, Steel Res. Int. 86, 1151-1160 (2015).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93d8f377-c88b-4b9d-8774-c1d9089031e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.