PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-destructive testing method on the compressive strength of ice materials based on the rebound method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The uniaxial compressive strength (UCS) of ice materials, as an important indicate to assess safety of ice and snow buildings, is difficult to measure quickly using existing methods. The rebound method is widely used for the Non-Destructive Testing (NDT) of the UCS of building materials. Therefore, firstly, rebound methods of ice materials were established. In this study, the Leeb hardness tester and Schmidt hammer were selected to test plain ice and fiber-reinforced ice (FRI), respectively. Then, the rebound test and uniaxial compression test were performed under different temperatures (-20, -15, -10 and -5°C) and different fiber content (0, 1, 2 and 4%). The result of rebound showed that the rebound value of 1, 2 and 4% FRI was 1.33, 1.09 and 1.08 times, respectively, that of plain ice at -20°C. The rebound value of plain ice at -20°C was 1.32 times higher than that at -5°C. Secondly, the correlation between rebound value and UCS of the ice material was established. The UCS of plain ice has a linear relationship with rebound value, while FRI exhibited a power law relation-ship. Finally, the rebound method was applied to field NDT of ice and snow buildings in Harbin. The test results showed that the estimated UCS of ice materials was conservative due to freezing patterns, and the error between the estimated and the measured UCS of the FRI was about 10%. The NDT method for ice materials in this study has a positive effect on the safety assessment of ice and snow building.
Rocznik
Strony
art. e234, 1--17
Opis fizyczny
Bibliogr. 46 poz., il., tab., wykr.
Twórcy
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education
  • Harbin Institute of Technology, Harbin, China
autor
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology
  • Harbin Institute of Technology, Harbin, China
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education
  • Harbin Institute of Technology, Harbin, China
Bibliografia
  • 1. Wu Y, Lou X, Liu X, Pronk A. The property of fiber reinforced ice under uniaxial compression. Mater Struct. 2020. https://doi. org/10.1617/s11527-020-01463-2.
  • 2. Lou X, Wu Y. Splitting tensile mechanical properties of plain ice and fiber-reinforced ice. Cold Reg Sci Technol. 2021;192:103381. https://doi.org/10.1016/j.coldregions.2021. 103381.
  • 3. Wu Y, Liu X, Chen B, Li Q, Luo P, Pronk A. Design, construction and monitoring of an ice composite shell structure. Autom Constr. 2019;106:102862. https://doi.org/10.1016/j.autcon.2019.102862.
  • 4. Liu X, Chen B, Wu Y, Luo P. Structural performance investigations and field monitoring of an air-rib combined ice shell structure (in Chinese). J Build Struct. 2021;42:186-96. https://doi.org/ 10.14006/j.jzjgxb.2019.0855.
  • 5. Pronk ADC, Arntz MHFP, Hermens LJ. Da Vinci’s Bridge in ice and other ice structures with an Inflatable mould-Eindhoven University of Technology research portal n.d. https://research. tue.nl/en/publications/da-vincis-bridge-in-ice-and-other-ice-structures-with-an-infatab. Accessed 27 Mar 2023.
  • 6. Liu X. Study on mechanical performance and construction simulation of large-span shells (in Chinese). Harbin institute of technology. 2022:3-15.
  • 7. Wu Y, Liu X, Luo P, Zhang R. Structural analysis and construction quality assessment of a free-form ice composite shell. Structures. 2020;27:868-78. https://doi.org/10.1016/j.istruc.2020.06.032.
  • 8. Szilágyi K, Borosnyói A, Zsigovics I. Rebound surface hardness of concrete: introduction of an empirical constitutive model. Constr Build Mater. 2011;25:2480-7. https://doi.org/10.1016/j. conbuildmat.2010.11.070.
  • 9. Kovler K, Wang F, Muravin B. Testing of concrete by rebound method: Leeb versus Schmidt hammers. Mater Struct. 2018. https://doi.org/10.1617/s11527-018-1265-1.
  • 10. Hobbs B, Tchoketch KM. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Sci Int. 2007;167:167-72. https://doi.org/ 10.1016/j.forsciint.2006.06.065.
  • 11. Xiao J, Li J, Sun Z. Inspection of compressive strength of recycled concrete by rebound method (in Chinese). Sichuan Build Sci 2004;30:51–4.
  • 12. Tsioulou O, Lampropoulos A, Paschalis S. Combined non destructive testing (NDT) method for the evaluation of the mechanical characteristics of ultra high performance fibre reinforced concrete (UHPFRC). Constr Build Mater. 2017;131:66-77. https://doi.org/10.1016/j.conbuildmat.2016.11.068.
  • 13. Kahraman S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci (Oxford, England: 1997). 2001;38:981-94. https://doi.org/10. 1016/S1365-1609(01)00039-9.
  • 14. Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci. 2006;43:224-35. https://doi.org/10. 1016/j.ijrmms.2005.06.007.
  • 15. Henderson BL, Gudipati MS, Bateman FB. Leeb hardness of salty Europa ice analogs exposed to high-energy electrons. Icarus. 2019;322:114-20. https://doi.org/10.1016/j.icarus.2019. 01.006.
  • 16. Kaufmann E, Attree N, Bradwell T, Hagermann A. Hardness and yield strength of CO ice under martian temperature conditions. J Geophys Res. 2020. https://doi.org/10.1029/2019JE006217.
  • 17. Timco GW, Frederking RMW. Laboratory impact tests on fresh water ice. Cold Reg Sci Technol. 1993;17:77-97. https://doi. org/10.1016/0165-232X(93)90047-C.
  • 18. Zhang W, Li J, Wang L, Yuan B, Yang Q. Flexural characteristics of artificial ice in winter sports rinks: experimental study and non-destructive prediction based on surface hardness method. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00387-8.
  • 19. Poirier L, Lozowski EP, Thompson RI. Ice hardness in winter sports. Cold Reg Sci Technol. 2011;67:129-34. https://doi.org/ 10.1016/j.coldregions.2011.02.005.
  • 20. Wu Y, Huang J, Chen J. Sublimation of composite ice and its influence on performance of ice shells. Int J Space Struct. 2021;36:67-77. https://doi.org/10.1177/09560599211011863.
  • 21. Kazemi M, Madandoust R, Brito JD. Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing. Constr Build Mater. 2019;224:630-8. https://doi.org/10.1016/j.conbuildmat.2019.07.110.
  • 22. Yang Y, Zhan B, Wang J, Zhang Y. Nondestructive assessment of the compressive strength of concrete with high volume slag. Mater Charact. 2020;162:110223. https://doi.org/10.1016/j.match ar.2020.110223.
  • 23. Ashby M, Jones D. Engineering materials 1: an introduction to their properties and applications. Oxford: Butterworth-Heinemann; 1980.
  • 24. Das B. Rebound strength of the coal series. Fuel. 1973;52:118-20. https://doi.org/10.1016/0016-2361(73)90033-1.
  • 25. Higa M, Arakawa M, Maeno N. Size dependence of restitution coefficients of ice in relation to collision strength. Icarus (New York, NY 1962). 1998;133:310-20. https://doi.org/10.1006/icar. 1998.5938.
  • 26. Basu A, Aydin A. A method for normalization of Schmidt hammer rebound values. Int J Rock Mech Min Sci. 2004;41:1211-4. https://doi.org/10.1016/j.ijrmms.2004.05.001.
  • 27. Yilmaz NG, Goktan RM. Comparison and combination of two NDT methods with implications for compressive strength evalu ation of selected masonry and building stones. Bull Eng Geol Env. 2019;78:4493–503. https://doi.org/10.1007/s10064-018-1382-7.
  • 28. Karaman K, Kesimal A. Correlation of schmidt rebound hardness with uniaxial compressive strength and P-wave velocity of rock materials. Arab J Sci Eng. 2015;40:1897-906. https://doi.org/10. 1007/s13369-014-1510-z.
  • 29. JGJ/T 23. Technical specifcation for inspection of concrete compressive strength by rebound method (in Chinese). Beijing: China Architecture & Building Press; 2011.
  • 30. Lou X, Wu Y. Influence of temperature and fiber content on direct shear properties of plain ice and fiber-reinforced ice. Cold Reg Sci Technol. 2022;194:103458. https://doi.org/10.1016/j.coldregions. 2021.103458.
  • 31. ASTM C5873-14. Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. 2014
  • 32. Yang Z. The study of Schmidt hammer for estimating the compressive strength of rock (in Chinese). Hunan University of Sci ence and Technology. 2015:5-9.
  • 33. Karaman K, Kesimal A. A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull Eng Geol Env. 2015;74:507-20. https://doi.org/10. 1007/s10064-014-0617-5.
  • 34. Poole RW, Farmer IW. Consistency and repeatability of Schmidt hammer rebound data during feld testing. Int J Rock Mech Min Sci Geomech Abstr. 1980;17:167-71.
  • 35. Petrovic JJ. Review mechanical properties of ice and snow. J Mater Sci. 2003;38:1-6.
  • 36. Lim YY, Chaudhri MM. The infuence of grain size on the indentation hardness of high-purity copper and aluminium. Philos Mag A. 2002;82:2071-80. https://doi.org/10.1080/014186102082357 17.
  • 37. Guo F, Yu H, Wu C, Xin Y, He C, Liu Q. The mechanism for the different effects of texture on yield strength and hardness of Mg alloys. Sci Rep. 2017;7:8647. https://doi.org/10.1038/ s41598-017-08966-z.
  • 38. Kermani M, Farzaneh M, Gagnon R. Compressive strength of atmospheric ice. Cold Reg Sci Technol. 2007;49:195-205. https://doi.org/10.1016/j.coldregions.2007.05.003.
  • 39. Kermani M, Farzaneh M, Gagnon R. Bending strength and effective modulus of atmospheric ice. Cold Reg Sci Technol. 2008;53:162-9. https://doi.org/10.1016/j.coldregions.2007.08. 006.
  • 40. Higa M, Arakawa M, Maeno N. Measurements of restitution coefficients of ice at low temperature. Planet Space. 1996;9:917-25. https://doi.org/10.1016/0032-0633(95)00133-6.
  • 41. Kim E, Schulson EM. A phenomenological explanation of the pressure-area relationship for the indentation of ice: two size effects in spherical indentation experiments. Cold Reg Sci Technol. 2015;115:48-55. https://doi.org/10.1016/j.coldregions.2015. 03.008.
  • 42. Zhang W, Li J, Yuan B, Wang L, Yang Q. Experimental investigation of unconfined compressive properties of artificial ice as a green building material for rinks. Buildings. 2021;12:586. https://doi.org/10.3390/buildings11120586.
  • 43. Barnes P, Tabor D, Walker JCF. The friction and creep of polycrystalline ice. Proc R Soc Lond Math Phys Sci. 1971;324:127-55. https://doi.org/10.1098/rspa.1971.0132.
  • 44. GB51202. Technical Standard for Ice and Snow Landscape Buildings (in Chinese). Beijing: China Architecture & Building Press; 2016.
  • 45. Iliescu D, Baker I. The structure and mechanical properties of river and lake ice. Cold Reg Sci Technol. 2007;48:202-17. https://doi.org/10.1016/j.coldregions.2006.11.002.
  • 46. Wang A, Wei Z, Chen X, Ji S, Liu Y, Qing L. Brief communication: Full-feld deformation measurement for uniaxial compression of sea ice using the digital image correlation method. Cryosphere. 2019;13:1487-94. https://doi.org/10.5194/tc-13-1487-2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93d7ba3d-f39a-4aa0-84b4-ed4c5b8e70d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.