Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work is related to the Jacobian Conjecture. It contains the formulas concerning algebraic dependence of the polynomial mappings having two zeros at infinity and the constant Jacobian. These relations mean that such mappings are non-invertible. They reduce the Jacobian Conjecture only to the case of mappings having one zero at infinity. This case is already solved by Abhyankar. The formulas presented in the paper were illustrated by the large example.
Rocznik
Tom
Strony
87--96
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Abhyankar S.S., Expansion techniques in algebraic geometry, Tata Inst. Fundamental Research, Bombay 1977.
- [2] Charzyński Z., Chądzyński J., Skibinski P., A Contribution to Keller’s Jacobian Conjecture, Lecture Notes In Math. 1165, Springer-Verlag, Berlin, Heidelberg, New York 1985, 36-51.
- [3] Wright D., On the Jacobian conjecture, Illinois J. Math. 1981, 25, 3, 423-440.
- [4] Van den Essen A., Polynomial automorphisms and the Jacobian conjecture, Progress in Matematics 190, Birkhäuser Verlag, Basel 2000.
- [5] Bass H., Connell E.H., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, American Mathematical Society. Bulletin. New Series 1982, 7(2), 287-330.
- [6] Fulghesu D., An Introduction to the Jacobian Conjecture, Minnesota State University Moorhead, October 12, 2010.
- [7] Drużkowski L.M., The Jacobian Conjecture, Uniwersytet Jagielloński, Kraków 1993.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93d6bfd3-0b94-42d9-ac0e-b9a576aa3a9d