Identyfikatory
Warianty tytułu
Application of radial basis functions to dynamic analysis of a two material plate
Języki publikacji
Abstrakty
W pracy przedstawiono bezsiatkową metodę kolokacyjną Kansy i jej zastosowanie do analizy drgań własnych płyty wykonanej z dwóch materiałów. W analizie wykorzystano funkcje Wendlanda, zaś uzyskane wyniki porównano z wynikami symulacji Metodą Elementów Skończonych.
This paper describes a meshless Kansa collocation method and its application to dynamic analysis of a two material plate. Wendland functions were used in analysis. All results were compared to Finite Element Method result.
Czasopismo
Rocznik
Tom
Strony
101--105, CD
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- AGH Akademia Górniczo – Hutnicza
autor
- AGH Akademia Górniczo – Hutnicza
Bibliografia
- 1. Alves C.J.S., Antunes P.R.S., The method of fundamental solutions applied to the calculation of eigenfrequences and eigenmodes of 2D simply connected shapes. Computers, Mate-rials & Continua 2005, nr 2.
- 2. Alves C.J.S., Chen C.S., A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Advances in Computational Mathematics 2005, nr 23.
- 3. Alves C.J.S., Valtchev S.S., Numerical comparison of two meshfree methods for acoustic wave scattering. Engineering Analysis with Boundary Elements 2005, nr 53.
- 4. Chinchapatnam P.P., Djidjeli K., Nair P.B., Radial basis function meshless metod for the steady incompressible Navier-Stokes equation. International Journal for Numerical Methods in Engi-neering, 84, 2007, pp.1509-1526.
- 5. Kaliski S., Drgania i fale. PWN, Warszawa 1986.
- 6. Kansa E.J., Multiquadratic a scattered data approximation scheme with application to computational fluid dynamics. Com-puters & Mathematics with Applications 19, 1990, pp. 147-165.
- 7. Kang S.W., Lee M.J. Kang Y.J., Vibration analysis of arbitrary shaped membranes using non-dimensional dynamic influence function. Journal of Sound and Vibration 1999, nr 221
- 8. Karageorghis A., The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. Applied Mathematics Letters 2001, nr 69.
- 9. Osiński Z., Teoria drgań. PWN, Warszawa 1980.
- 10. Vu P., Fasshauer G.E., Application of two radial basis function-pseudospectral meshfree methods to three-dimensional elec-tromagnetic problems. IET Science, Measurements & Techno-logy, 5, 2011 pp. 206-210.
- 11. Reutskiy S.Y., The method of external sources for eigenvalue problems with Helmholtz equation. Computer Modeling in Engi-neering & Science 2006, nr 12.
- 12. Wawrzynek A., Detka M., Cichoń Cz., Zastosowanie metody R-funkcji do wyznaczania współczynnika przejmowania ciepła. Modelowanie Inżynierskie 43, Gliwice 2012, s.255-263.
- 13. Wendland H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 4, 1995, pp.389-396.
- 14. Zerroukat M., Power H., Chen C.S., A numerical method for heat transfer problem using collocation and radial basis function. International Journal for Numerical Methods in Engineering, 42, 1998, pp. 1263-1278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93d11719-851c-433a-9f8c-f6f3e72993ea