PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of the construction products as a research challenge. Small error – big difference in assessment?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper refers to the importance of test results uncertainty in the assessment of the construction product performance. Uncertainty understood as dispersion attributed to any value which is result of the tests, calculations or other evaluations, occurs at every level of assessment (material, product, construction). Authors presented the various approaches to uncertainty estimation, especially in situation of small number of tests results which is characteristic for testing of construction products. Effects of uncertainty on final assessment of construction product was analyzed using the example of bearing capacity of thin-walled structure obtained by numerical calculation. Different values of material tests uncertainty resulting from different approaches to its assessment was taken into account. It was demonstrated that the difference in the results of strength tests of a material, which falls within the limits of uncertainty, may result in a very significant difference in the evaluation of a structure.
Rocznik
Strony
675--686
Opis fizyczny
Bibliogr. 32 poz., tab., wykr., rys.
Twórcy
autor
  • Instytut Techniki Budowlanej, 1 Filtrowa St., 00-611 Warszawa, Poland
  • Instytut Techniki Budowlanej, 1 Filtrowa St., 00-611 Warszawa, Poland
Bibliografia
  • [1] EA 4/16 G:2003, “EA guidelines on the expression of uncertainty in quantitative testing”, http://www.european-accreditation.org/publication/ea-4‒16-g-rev00-december-2003-rev.
  • [2] L. Czarnecki and J.J. Sokołowska, “Material model and revealing the truth”, Bull. Pol. Ac.: Tech. 63 (1), 7–14 (2015), doi:10.1515/bpasts-2015‒0001.
  • [3] A.S. Nowak and A.M. Rakoczy, “Uncertainties in the building process”, Bull. Pol. Ac.: Tech. 61 (1), 129–135 (2013), doi:10.2478/bpasts-2013‒0011.
  • [4] EU Regulation No. 305/2011 Of The European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing, Council Directive 89/106/EEC, http://ec.europa.eu/growth/sectors/construction/product-regulation.
  • [5] E. Bashkansky, T. Gadrich, and D. Knani, “Some metrological aspects of the comparison between two ordinal measuring systems”, Accred. Qual. Assur. 16, 63–72 (2011), doi:10.1007/s00769‒010‒0741‒2.
  • [6] P.Th. Wilrich, “The determination of precision of qualitative measurement methods by interlaboratory experiments”, Accred. Qual. Assur. 15, 439–444 (2010), doi:10.1007/s00769‒010‒0661‒1.
  • [7] K. Hori, Y. Tsutsumi, Y. Takao, and T. Suzuki, “Calculation of repeatability and reproducibility for qualitative data”, National Sun Yat-sen University, http://bm.nsysu.edu.tw/tutorial/iylu/ANQ%202008/11.%20Session%20G/G5‒01.doc.
  • [8] JCGM 100 (2008), “Evaluation of measurement data: guide to the expression of uncertainty in measurement (GUM)”, http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.
  • [9] W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B.A. van Asselt, P. Janssen, and M.P. Krayer von Krauss, “Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support”, Integrated Assessment 4 (1), 5–17 (2003), doi:10.1076/iaij.4.1.5.16466.
  • [10] EN 206:2013, “Concrete – specification, performance, production and conformity”.
  • [11] ISO 12491:1997, “Statistical methods for quality control of building materials and components”.
  • [12] ILAC G8:03/2009, “Guidelines on the reporting of compliance with specification”, http://ilac.org/publications-and-resources/ilac-documents/guidance-series/.
  • [13] JCGM 200 (2012), International vocabulary of metrology: basic and general concepts and associated terms (VIM), 3rd ed., http://www.bipm.org/vim.
  • [14] EA-4/02 M:2013, “Evaluation of the uncertainty of measurement In calibration”, http://www.european-accreditation.org/publication/ea-4‒02-m-rev01-september-2013.
  • [15] EN 846‒9:2000, “Methods of test for ancillary components for masonry – Part 9. Determination of flexural resistance and shear resistance of lintels”.
  • [16] E. Szewczak, “Risks associated with the uncertainty of test results and the assessment of construction products’ conformity”, Building Materials 10, 73–75 (2011), [in Polish].
  • [17] P. Fisicaro, S. Amarouche, B. Lalere, G. Labarraque, and M. Priel, “Approaches to uncertainty evaluation based on proficiency testing schemes in chemical measurements”, Accred. Qual. Assur. 13, 361–366 (2008), doi:10.1007/s00769‒08‒00402-x.
  • [18] S.K. Wong and W.Y. Yao, “Bias analysis of proficiency testing programme results”, Accred. Qual. Assur. 21, 185–189 (2016), doi:10.1007/s00769‒016‒1197‒9.
  • [19] E. Szewczak and A. Bondarzewski, “Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?”, Accred. Qual. Assur. 21, 91–100 (2016), doi:10.1007/s00769‒016‒1195-y.
  • [20] EN ISO 6892‒1:2009, “Metallic materials – Tensile testing – Part 1: Method of test at room temperature”.
  • [21] L. Brunarski and M. Dohojda, “Diagnostics of concrete strength in structures”, Instytut Techniki Budowlanej, Warsaw, 2014, [in Polish].
  • [22] JCGM 101 (2008), “Evaluation of measurement data – Supplement 1 to the Guide to the expression of uncertainty in measurement – Propagation of distributions using a Monte Carlo method”, http://www.bipm.org/utils/common//documents/jcgm/JCGM_101_2008_E.pdf.
  • [23] T. Lafarge and A. Possolo, NIST Uncertainty Machine – User’s Manual, Statistical Engineering Division, Information Technology Laboratory, National Institute of Standards and Technology Gaithersburg, Maryland, USA, 2015, http://uncertainty.nist.gov/, accessed August 2016.
  • [24] H. Huang, “Comparison of uncertainty calculation models”, Cal. Lab. Int. J. Metrol. 19 (1), 24–29 (2012).
  • [25] M. Roesslein, M. Wolf, B. Wampfler, and W. Wegscheider, “A forgotten fact about the standard deviation”, Accred. Qual. Assur. 12, 495–496 (2007).
  • [26] A. Piekarczuk, K. Malowany, P. Więch, M. Kujawińska, and P. Sulik, “Stability and bearing capacity of arch-shaped corrugated shell elements: experimental and numerical study”, Bull. Pol. Ac.: Tech. 63 (1), 113–123 (2015), doi:10.1515/bpasts-2015‒0013.
  • [27] A. Piekarczuk and K. Malowany, “Comparative analysis of numerical models of arch-shaped steel sheet sections”, Archives of Civil and Mechanical Engineering 16 (4), 645–658 (2016), doi:10.1016/j.acme.2016.04.006.
  • [28] Theory Reference for the Mechanical APDL and Mechanical Applications, ed. P. Kohnke, Ansys Inc., USA, 2009.
  • [29] M. Kotełko, Load-Bearing Capacity and the Mechanisms of Failure of Thin-Walled Structures, pp. 18–20, Wydawnictwa Naukowo-Techniczne, Warszawa, 2011, [in Polish].
  • [30] EN 1993‒1‒1:2005, “Eurocode 3: Design of steel structures – Part 1‒1: General rules and rules for buildings”.
  • [31] EN 1991‒1‒3:2003, “Eurocode 1: Actions on structures – Part 1‒3: General actions – Snow loads”.
  • [32] EN 1990:2002, “Eurocode – Basis of structural design”.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93cb17d8-85e4-4d83-ac43-cc5793cf3616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.