PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Set-valued minimax fractional programming problems under -cone arcwise connectedness

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider a set-valued minimax fractional programming problem (MFP), where the objective as well as constraint maps are set-valued. We introduce the notion of ρ- cone arcwise connectedness of set-valued maps as a generalization of cone arcwise connected set-valued maps. We establish the sufficient Karush-Kuhn-Tucker (KKT) conditions for the existence of minimizers of the problem (MFP) under ρ-cone arcwise connectedness assumption. Further, we study the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types of duality models and prove the corresponding weak, strong, and converse duality theorems between the primal (MFP) and the corresponding dual problems under ρ-cone arcwise connectedness assumption.
Rocznik
Strony
43--69
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Department of Mathematics, Taki Government College, 743429 Taki, India
Bibliografia
  • AHMAD, I. (2003) optimality conditions and duality in fractional minimax programming Involving generalized ρ-invexity. internat. J. Manag. Syst. 19, 165–180.
  • AHMAD, I. and HUSAIN, Z. (2006) optimality conditions and duality in nondifferentiable Minimax fractional programming with generalized convexity. J. Optim. Theory Appl. 129(2), 255–275.
  • AUBIN, J.P. (1981) Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. In: L. Nachbin (ed.), Mathematical Analysis and Applications, Part A. Academic Press, New York, 160–229.
  • AUBIN, J.P. and FRANKOWSKA, H. (1990) Set-Valued Analysis. Birhäuser, Boston.
  • AVRIEL, M. (1976) Nonlinear Programming: Theory and Method. Prentice-Hall, Englewood Cliffs, New Jersey.
  • BECTOR, C.R. and BHATIA, B.L. (1985) Sufficient optimality conditions and duality for a minmax problem. Util. Math. 27, 229–247.
  • BORWEIN, J. (1977) Multivalued convexity and optimization: a unified approach to inequality and equality constraints. Math. Program. 13(1), 183–199.
  • CAMBINI, A., MARTEIN, L. and VLACH, M. (1999) Second order tangent sets and optimality conditions. Math. Japonica 49(3), 451–461.
  • CHANDRA, S. and KUMAR, V. (1995) Duality in fractional minimax programming. J. Austral. Math. Soc. (Ser. A.) 58, 376–386.
  • CORLEY, H.W. (1987) Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54(3), 489–501.
  • DAS, K. and NAHAK, C. (2014) Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity. Rend. Circ. Mat. Palermo 63(3), 329–345.
  • DAS, K. and NAHAK, C. (2016a) Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems. SeMA J. 73(2), 183–199.
  • DAS, K. and NAHAK, C. (2016b) Set-valued fractional programming problems under generalized cone convexity. Opsearch 53(1), 157–177.
  • DAS, K. and NAHAK, C. (2017a) Approximate quasi efficiency of set-valued optimization problems via weak subdifferential. SeMA J. 74(4), 523–542.
  • DAS, K. and NAHAK, C. (2017b) Set-valued minimax programming problems under generalized cone convexity. Rend. Circ. Mat. Palermo 66(3), 361–374.
  • DAS, K. and NAHAK, C. (2020a) Optimality conditions for set-valued minimax fractional programming problems. SeMA J. 77(2), 161–179.
  • DAS, K. and NAHAK, C. (2020b) Optimality conditions for set-valued minimax programming problems via second-order contingent epiderivative. J. Sci. Res. 64(2), 313–321.
  • FU, J. and WANG, Y. (2003) Arcwise connected cone-convex functions and mathematical programming. J. Optim. Theory Appl. 118(2), 339–352.
  • JAHN, J. and RAUH, R. (1997) Contingent epiderivatives and set-valued optimization. Math. Method Oper. Res. 46(2), 193–211.
  • LAI, H.C. and LEE, J.C. (2002) On duality theorems for nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 146, 115–126.
  • LAI, H.C., LIU, J.C. and TANAKA, K. (1999) Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl. 230, 311–328.
  • LALITHA, C., DUTTA, J. and GOVIL, M.G. (2003) Optimality criteria in set-valued optimization. J. Aust. Math. Soc. 75(2), 221–232.
  • LIANG, Z.A. and SHI, Z.W. (2003) Optimality conditions and duality for minimax fractional programming with generalized convexity. J. Math. Anal. Appl. 277, 474–488.
  • LIU, J.C. and WU, C.S. (1998) On minimax fractional optimality conditions with (F, ρ)-convexity. J. Math. Anal. Appl. 219, 36–51.
  • MISHRA, S.K. (1995) Pseudolinear fractional minmax programming. Indian J. Pure Appl. Math. 26, 763–772.
  • MISHRA, S.K. (1998) Generalized pseudo convex minmax programming. Opsearch 35(1), 32–44.
  • MISHRA, S.K. (2001) Pseudoconvex complex minimax programming. Indian J. Pure Appl. Math. 32(2), 205–214.
  • MISHRA, S.K., WANG, S.Y. and LAI, K.K. (2004) Complex minimax programming under generalized convexity. J. Comput. Appl. Math. 167(1), 59–71.
  • MISHRA, S.K., WANG, S.Y., LAI, K.K. and SHI, J.M. (2003) Nondifferentiable minimax fractional programming under generalized univexity. J. Comput. Appl. Math. 158(2), 379–395.
  • PENG, Z. and XU, Y. (2018) Second-order optimality conditions for conesubarcwise connected set-valued optimization problems. Acta Math. Appl. Sin. Engl. Ser. 34(1), 183–196.
  • TREANTA, S. and DAS, K. (2021) On robust saddle-point criterion in optimization problems with curvilinear integral functionals. Mathematics 9(15), 1–13.
  • WEIR, T. (1992) Pseudoconvex minimax programming. Util. Math. 42, 234–240.
  • YADAV, S.R. and MUKHERJEE, R.N. (1990) Duality for fractional minimax programming problems. J. Austral. Math. Soc. (Ser. B.) 31, 484–492.
  • YIHONG, X. and MIN, L. (2016) Optimality conditions for weakly efficient elements of set-valued optimization with α-order near cone-arcwise connectedness. J. Systems Sci. Math. Sci. 36(10), 1721–1729.
  • YU, G. (2013) Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative. Asia-Pac. J. Oper. Res. 30(03), 1340004.
  • YU, G. (2016) Global proper efficiency and vector optimization with conearcwise connected set-valued maps. Numer. Algebra, Control & Optim. 6(1), 35–44.
  • ZALMAI, G.J. (1987) Optimality criteria and duality for a class of minimax programming problems with generalized invexity conditions. Util. Math. 32, 35–57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93c710e4-d70f-433c-910e-ecf8dfda6103
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.