PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical approach to the standard model of water hammer with fluid-structure interaction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the classic water hammer (WH) theory, 1D liquid flow in a quasi-rigid pipe is assumed. When the pipe is flexible or is fixed to the foundation with elastic supports, the dynamic fluid structure interaction (FSI) should be taken into account for more accurate modelling of the system behaviour. The standard model of WH-FSI for a straight pipe reach is governed by fourteen hyperbolic partial differential equations of the first order, two for 1D liquid flow and twelve for 3D motion of the pipe. This model is presented in the paper and an algorithm for its numerical solution based of the method of characteristics is proposed. Basic boundary conditions (BC) are shortly discussed. The important condition at the junction of two subpipes fixed to the foundation with a viscoelastic support is presented in details and a general method of its solution is proposed.
Rocznik
Strony
543--555
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • 1. Adamkowski A., 2013, Liquid Unsteady Flows in Closed Conduits (in Polish), Publishing House of the Institute of Fluid-Flow Machinery, Gdansk
  • 2. Adamkowski A., Henclik S., Lewandowski M., 2010, Experimental and numerical results of the influence of dynamic Poisson effect on transient pipe flow parameters, 25th IAHR Symposium on Hydraulic Machinery and Systems, Timisoara, Institute of Physics Conference Series: Earth and Environmental Sciencees, DOI: 10.1088/1755-1315/12/1/012041
  • 3. Adamkowski A., Lewandowski M., 2006, Experimental examination of unsteady friction models for transient pipe flow simulation, ASME Journal of Fluids Engineering, 128, 11
  • 4. Alastruey J., Parker K.H., Sherwin S.J., 2012, Arterial pulse wave haemodynamics, Proceedings of the 11th International Conference on Pressure Surges, Lisbon, 401-442
  • 5. Almeida A.B., Koelle E., 1992, Fluid Transients in Pipe Networks, Computational Mechanics Publications, Boston, London
  • 6. Bjoerck A., Dahlquist G., 1974, Numerical Methods, Prentice Hall, chap. 6.9.1 (Polish translation, 1987, PWN, Warsaw)
  • 7. Cowper G.R., 1966, The shear coefficient in Timoshenko’s beam theory, Journal of Applied Mechanics, 33, 6, 335-340
  • 8. Ghidaoui M., Ming Zao, Mcilnnis D., Axworthy D., 2005, A review of water hammer theory and practise, Applied Mechanics Reviews, 58, 1, 49-76
  • 9. Henclik S., 2010, Mathematical model and numerical computations of transient pipe flows with fluid-structure interaction, Transactions of the Institute of Fluid-Flow Machinery, 122, 77-94
  • 10. Hutchinson J.R., 2001, Shear coefficients for Timoshenko beam theory, Journal of Applied Mechanics, 68, 1, 87-92
  • 11. Meirovitch L., 1967, Analytical Methods in Vibrations, The Macmillan Company, New York
  • 12. Quarteroni A., Valli A., 1994, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin
  • 13. Tijsseling A.S., Lavooij C.S.W., 1990, Waterhammer with fluid-structure interaction, Applied Scientific Research, 47, 273-285
  • 14. Tijsseling A.S., 1993, Fluid – structure interaction in case of waterhammer with cavitation, PhD thesis, Delft University of Technology, Report 93-6, Faculty of Civil Engineering, http://www.win.tue.nl/∼atijssel/pdf files/Tijsseling 1993.pdf
  • 15. Timoshenko S., Young D.H., 1955, Vibration Problems in Engineering, Nostrad Co. Inc., NY
  • 16. Urbanowicz K., Zarzycki Z., 2012, New efficient approximation of weighting function for simulations of unsteady friction losses in liquid pipe flow, Journal of Theoretical and Applied Mechanics, 50, 2, 487-508
  • 17. Vitkovsky J.P., Bergant A., Simpson A.R., Lambert M.F., 2006, Systematic evaluation of one-dimensional unsteady friction models in simple pipelines, Journal of Hydraulic Engineering, 132, 7, 696-708
  • 18. Wang Z.M., Tan S.K., 1997, Coupled analysis of fluid transient and structural dynamic responses of a pipeline system, Journal of Hydraulic Research, 35, 1, 119-131
  • 19. Wiggert D.C., Hatfield F.J., Stuckenbruck S., 1987, Analysis of liquid and structural transients in piping by the method of characteristics, ASME Journal of Fluids Engineering, 109, 161-165
  • 20. Wiggert D., Tijsseling A., 2001, Fluid transients and fluid-structure interaction in flexible liquid-filled piping, Applied Mechanics Reviews, 54, 455-481
  • 21. Wylie E.B., Streeter V.L., 1993, Fluid Transients in Systems, Prentice-Hall, NJ
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93c6c020-45db-4b92-b710-60db4a4bb9f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.