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1. Introduction

The homotopy perturbation method is an effective and powerful method for
solving the wide class of problems [1, 6, 7, 16, 17] In our previous papers [9, 11]
we proved the convergence of homotopy perturbation method for the Fredholm
and Volterra integral equations of the second kind. Moreover, the formulas for
estimating the error of approximate solution were elaborated in that paper. Similar
results in case of the Volterra-Fredholm integral equations of the second kind are
presented in paper [8]. In the current paper we show that those previous results
can be adapted for the systems of Fredholm integral equations of the second kind.
The homotopy perturbation method was already applied for solving the sys-

tems of integral equations [2, 3, 14], however in any of these papers convergence
of the method or estimation of the error of approximate solution were not inve-
stigated. Only in cases of some single integral equations there exist some works
(excluding papers [9,11]) in which the authors consider convergence of the method
and, eventually, estimation of the error of approximate solution. So, in paper [13]
the convergence of homotopy perturbation method with the so-called convex ho-
motopy for the Fredholm and Volterra integral equations of the second kind is
discussed. Whereas, the authors of paper [4] prove the convergence and give es-
timation of the error of approximate solution for the piecewise homotopy pertur-
bation method used for solving the weakly singular Volterra integral equations
of the second kind. The homotopy perturbation method is a special case of the
homotopy analysis method developed by Shijun Liao [5, 10, 15, 20, 21, 23].

2. Systems of Fredholm integral equations

We consider the system of equations of the form

ui(x)− λ
n∑

j=1

∫ b

a

Kij(x, t)uj(t) dt = fi(x), (1)

for i = 1, 2, . . . , n, where x ∈ [a, b], λ ∈ C, functions Kij ∈ C([a, b] × [a, b])
and fi ∈ C[a, b] are known, whereas the functions ui are sought. The above system
of equations can be written in the matrix form

U(x) − λ
∫ b

a

K(x, y)U(t) dt = F(x), (2)
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where

K(x, t) =





K11(x, t) K12(x, t) . . . K1n(x, t)
K21(x, t) K22(x, t) . . . K2n(x, t)
...

...
. . .

...
Kn1(x, t) Kn2(x, t) . . . Knn(x, t)





and

U(x) =





u1(x)
u2(x)
...
un(x)




, F(x) =





f1(x)
f2(x)
...
fn(x)




.

According to the homotopy perturbation method (for details see, for exam-
ple, [11]) let us define operators L and N in the following way

L(V) = V, N(V) = −λ
∫ b

a

K(x, t)V(t) dt. (3)

By using the above operators we obtain the homotopy operator for the system of
Fredholm integral equations of the second kind

H(V, p) = V(x) −U0(x) + p
(
U0(x)− F(x) − λ

∫ b

a

K(x, t)V(t) dt
)
. (4)

According to the method, in the next step we search for the solution of operator
equation H(V, p) = 0 in the form of power series

V(x) =
∞∑

k=0

pkVk(x), (5)

where Vk(x) = [v1,k(x), v2,k(x), . . . , vn,k(x)]T . In order to determine the func-
tions Vj we substitute relation (5) into equation H(V, p) = 0 and we get (under
assumption that the series is convergent which will be discussed later):
∞∑

k=0

pkVk(x) = U0(x) + p
(
F(x)−U0(x)

)
+
∞∑

k=1

pk λ

∫ b

a

K(x, t)Vk−1(t) dt. (6)

By comparing the expressions with the same powers of parameter p, we receive
the relations

V0(x) = U0(x), (7)

V1(x) = F(x) −U0(x) + λ
∫ b

a

K(x, t)V0(t) dt, (8)

Vk(x) = λ
∫ b

a

K(x, t)Vk−1(t) dt, k ­ 2. (9)
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Now we proceed to discussing the convergence of series (5).

Theorem 1. Let the functions Kij and fi for i, j ∈ {1, 2, . . . , n}, appearing in
system (1), be continuous in regions Ω1 = [a, b]× [a, b] and Ω = [a, b], respectively.
Furthermore, as the initial approximation U0 let us choose a vector of functions

continuous in interval [a, b]. Certainly, it means that there exist the positive num-
bers M and N1 such that

‖K(x, t)‖ 6M ∧ ‖F(x)‖ 6 N1, for all x, t ∈ [a, b]. (10)

If additionally the following inequality

|λ| <
1

M (b− a)
(11)

is satisfied, then series (5), in which the functions Vk are determined by means

of relations (7)–(9), is uniformly convergent in interval [a, b] for each p ∈ [0, 1] to
the uniquely determined solution V, which is a vector of functions continuous in

[a, b].

Proof. Let U0 be a vector of functions continuous in interval [a, b]. Therefore there
exists a positive number N0 such that

‖U0(x)‖ 6 N0, for all x ∈ [a, b].

Taken assumptions imply the following estimations

‖V0(x)‖ = ‖U0(x)‖ 6 N0,

‖V1(x)‖ =
∥∥∥F(x) −U0(x) + λ

∫ b

a

K(x, t)V0(t) dt
∥∥∥ 6

6 ‖F(x)‖ + ‖U0(x)‖ + |λ|
∫ b

a

‖K(x, t)‖ ‖V0(t)‖ dt 6

6 N1 +N0 + |λ|
∫ b

a

M N0 dt = N0 +N1 + |λ|M N0 (b − a) =: B,

‖V2(x)‖ =
∥∥∥λ
∫ b

a

K(x, t)V1(t) dt
∥∥∥ 6 |λ|

∫ b

a

‖K(x, t)‖ ‖V1(t)‖ dt 6

6 |λ|

∫ b

a

M B dt = B |λ|M (b− a),

where B := N0 +N1 + |λ|M N0 (b− a). In general we have

‖Vk(x)‖ 6 B |λ|k−1Mk−1 (b − a)k−1, x ∈ [a, b], k > 1.
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In this way, for considered series (5) we get for p ∈ [0, 1]:

∞∑

k=0

pkVk(x) 6
∞∑

k=0

‖Vk(x)‖ 6 N0 +
∞∑

k=1

B |λ|k−1Mk−1 (b− a)k−1.

The last series in the above estimation is the convergent geometric series possessing
the common ratio q = |λ|M (b − a) < 1 (we remember assumption (11)). Hence,
the discussed series (5) is uniformly convergent in interval [a, b] for each p ∈ [0, 1]
to continuous function V. As it results from considerations included in [12,18,22]
the received solution is unique. �

Remark 2. Similar result as in Theorem 1 holds true in the class of square inte-
grable functions.

Remark 3. Construction of the method implies that the sum of series (5) for
p = 1 satisfies system (2). Under assumptions of Theorem 1 the series (5) for
p = 1 is convergent to the unique solution of system (2), independently on the
selected initial approximation U0, if only ‖U0(x)‖ 6 N0 for all x ∈ [a, b].

Remark 4. In presented theorem the interval [a, b] can be replaced by intervals
(a, b), (a, b] or [a, b), whereas the condition of continuity of functions Kij and
fi in the appropriate regions Ω1 and Ω must be strengthened by the additional
assumption of boundedness of these functions. Moreover, the conditions Kij ∈
C([a, b] × [a, b]) or ‖Kij‖ 6 M can be replaced by some weaker conditions, for
example, by the Lebesque integrability of Kij on the set [a, b]× [a, b] and by the
inequality (see [19]): ∫ b

a

‖K(x, t)‖ dt 6M (b − a)

for the respective norm of the matrix kernel K.

If we are not able to determine the sum of series (5) (for p = 1), then as
the approximate solution of considered equation we can accept the partial sum of
this series. If we take the first n+ 1 components, we obtain the so-called n-order
approximate solution

Ûn(x) =
n∑

k=0

Vk(x). (12)

Now let us proceed to estimating the error of approximate solution constructed in
this way.
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Theorem 5. Error of the n-order approximate solution can be estimated in the

following way

En 6 B

(
|λ|M (b− a)

)n

1− |λ|M (b − a)
, (13)

where En := supx∈[a,b] ‖U(x)− Ûn(x)‖, B := N0 +N1 + |λ|M N0 (b− a) and the
constants M , N1 and N0 are such that

‖K(x, t)‖ 6M ∧ ‖F(x)‖ 6 N1 ∧ ‖U0(x)‖ 6 N0 ∀x, t ∈ [a, b]. (14)

Proof. By using the estimations of functions Vk we get for any x ∈ [a, b]:

‖U(x) − Ûn(x)‖ =
∥∥∥
∞∑

k=0

Vk(x) −
n∑

k=0

Vk(x)
∥∥∥ =
∥∥∥
∞∑

k=n+1

Vk(x)
∥∥∥ 6

6

∞∑

k=n+1

‖Vk(x)‖ 6 B
∞∑

k=n+1

|λ|k−1Mk−1 (b − a)k−1 = B

(
|λ|M (b− a)

)n

1− |λ|M (b− a)
.

�

3. Example

In the example we use the discussed method for solving the following system
of Fredholm integral equations of the second kind

u1(x) = −
1
12
x3 +

11
12
x2 +

29
120
x−
9
80
+

+
1
4

(∫ 1

0

(x− t)3 u1(t) dt+
∫ 1

0

(x− t)2 u2(t) dt
)
,

u2(x) =
35
48
x3 +

361
240
x2 +

53
80
x+
13
168
+

+
1
4

(∫ 1

0

(x− t)2 u1(t) dt+
∫ 1

0

(x− t)3 u2(t) dt
)
.

Solution of the above system is given by the functions

ud1(x) = x2, ud2(x) = x3 + x2 + x.

If as the vector norm we take

‖V‖∞ := max
16k6n

|Vk|,
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then it induces the matrix norm of the form

‖A‖∞ := max
16k6n

n∑

j=1

|akj |.

Thus it is easy to notice that ‖K(x, t)‖∞ 6 2 for every (x, t) ∈ [0, 1]2, that is
M = 2. The same result can be obtained equally easy if we take

‖V‖1 :=
n∑

ki=1

|Vk| and ‖A‖1 := max
16j6n

n∑

k=1

|akj |.

It means that for the considered system of integral equations the condition (11)
is satisfied which implies the convergence of homotopy perturbation method.
By taking the zero initial approximationU0(x) = (0, 0)T and next by applying

relations (7)–(9) we get successively

V0(x) = U0(x) = (0, 0)T ,

V1(x) =
(
−
9
80
+
29x
120
+
11x2

12
−
x3

12
,
13
168
+
53x
80
+
361x2

240
+
35x3

48

)T
,

V2(x) =
( 713
6300

−
69x
280
+
7699x2

80640
+
211x3

2880
,

−
5281
67200

+
137867x
403200

−
41351x2

80640
+
22021x3

80640

)T
,

...

As the approximate solution Ûn =
(
û1,n, û2,n

)T
defined by partial sum (12)

for n = 5 we receive

û1,5(x) = −1.1532 10−7+ 2.75134 10−7x+ 1. x2 − 2.65244 10−8x3,

û2,5(x) = 8.04464 10−8+ 1.x+ 1.x2 + 1.x3,

whereas for n = 15 we get

û1,15(x) = 2.72971 10−15− 1.4225 10−14x+ 1. x2 − 1.8247 10−14x3,

û2,15(x) = −4.13206 10−15+ 1. x+ 1. x2 + 1. x3.

All calculations were executed with the aid of computational software Mathema-
tica.
In Table 1 there are presented the errors (‖udi − ûi,n‖ = supx∈[0,1] |udi(x) −

ûi,n(x)|) which occur in approximating the exact solution by the successive ap-
proximate solutions. Whereas, distributions of error in the entire interval [0, 1] for
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n = 3 and n = 8 are displayed in Figures 1 and 2. Presented results indicate that
the method is fast convergent and computing just a few (a dozen or so) first terms
of the series ensures a very good approximation of the exact solution.

Table 1
Errors of the exact solution approximations

n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖ n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖

1 0.1125 7.7381 10−2 6 2.3015 10−9 3.5532 10−9

2 2.0164 10−3 3.1473 10−3 7 1.2465 10−10 8.5761 10−11

3 1.1114 10−4 7.8733 10−5 8 2.5543 10−12 3.9478 10−12

4 2.1328 10−6 3.2904 10−6 9 1.3863 10−13 9.4478 10−14

5 1.1532 10−7 8.0446 10−8 10 2.8905 10−15 4.4708 10−15

a)
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Fig. 1. Distribution of error of the exact solution approximation for n = 3

Rys. 1. Rozkład błędu rozwiązania przybliżonego dla n = 3
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