PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transverse energy propagation and interference of elliptical Gaussian beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elliptical Gaussian beam (EGB) has many different physical properties from circular Gaussian beam. In this paper, the transverse energy flux and intensity of one and two coherent EGBs are studied. In our simulation, the transverse energy flux and intensity varying with waist ratio are discussed in detail. It has been found that through increasing the waist ratio, the transverse energy flux after interference would be strengthened significantly. Although the transverse energy flux is much weaker than the longitudinal energy flux, its signal to noise ratio has been verified to be strong enough for detection. Our derivations are still reasonable for another simulation with general experimental parameters. The simulation results are considered to be helpful for some physical experiments using the transverse energy flux of Gaussian beam, such as an important application in electromagnetic response produced by interaction of high-frequency gravitational waves.
Czasopismo
Rocznik
Strony
249--260
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • College of Physics, Chongqing University, Chongqing 401331, China
  • Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
  • College of Physics, Chongqing University, Chongqing 401331, China
Bibliografia
  • [1] CAI Y., HE S., Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere, Optics Letters 31(5), 2006: 568-570. https://doi.org/10.1364/OL.31.000568
  • [2] SHEN J., LIU X., WANG W., YU H., Calculation of light scattering of an elliptical Gaussian beam by a spherical particle, Journal of the Optical Society of America A 35(8), 2018: 1288-1298. https://doi.org/10.1364/JOSAA.35.001288
  • [3] ARNAUD J.A., KOGELNIK H., Gaussian light beams with general astigmatism, Applied Optics 8(8), 1969: 1687-1693. https://doi.org/10.1364/AO.8.001687
  • [4] CARTER W.H., Electromagnetic field of a Gaussian beam with an elliptical cross section, Journal of the Optical Society of America 62(10), 1972: 1195-1201. https://doi.org/10.1364/JOSA.62.001195
  • [5] DUAN K., LÜ B., Propagation properties of vectorial elliptical Gaussian beams beyond the paraxial approximation, Optics & Laser Technology 36(6), 2004: 489-496. https://doi.org/10.1016/j.optlastec.2003.12.011
  • [6] SESHADRI S.R., Basic elliptical Gaussian wave and beam in a uniaxial crystal, Journal of the Optical Society of America A 20(9), 2003: 1818-1826. https://doi.org/10.1364/JOSAA.20.001818
  • [7] GIULIANO C.R., DEBOIS D.F., HELLWARTH R.W., HESS L.D., RICKEL G.R., Damage threshold studies in laser crystals, Tech. Rep. (HUGHES RESEARCH LABS MALIBU CA, 1972).
  • [8] CORNOLTI F., LUCCHESI M., ZAMBON B., Elliptic Gaussian beam self-focusing in nonlinear media, Optics Communications 75(2), 1990: 129-135. https://doi.org/10.1016/0030-4018(90)90241-K
  • [9] ALDA J., WANG S., BERNABEU E., Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams, Optics Communications 80(5-6), 1991: 350-352. https://doi.org/10.1016/0030-4018(91)90421-9
  • [10] QIANG L., SHAOMIN W., ALDA J., BERNABEU E., Transformation of nonsymmetric Gaussian-beam into symmetrical one by means of tensor ABCD law, Optik 85(2), 1990: 67-72.
  • [11] MEDHEKAR S., KONAR S., SODHA M.S., Self-tapering of elliptic Gaussian beams in an elliptic-core nonlinear fiber, Optics Letters 20(21), 1995: 2192-2194. https://doi.org/10.1364/OL.20.002192
  • [12] FREEGARDE T., COUTTS J., WALZ J., LEIBFRIED D., HÄNSCH T.W., General analysis of type I second-harmonic generation with elliptical Gaussian beams, Journal of the Optical Society of America B 14(8), 1997: 2010-2016. https://doi.org/10.1364/JOSAB.14.002010
  • [13] LI F.-Y., TANG M.-X., SHI D.-P., Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models, Physical Review D 67(10), 2003: 104008. https://doi.org/10.1103/PhysRevD.67.104008
  • [14] LI F., BAKER R.M. JR, FANG Z., STEPHENSON G.V., CHEN Z., Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects, European Physical Journal C 56(3), 2008: 407-423. https://doi.org/10.1140/epjc/s10052-008-0656-9
  • [15] LI F., YANG N., FANG Z., BAKER R.M.L. JR, STEPHENSON G.V., WEN H., Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves, Physical Review D 80(6), 2009: 064013. https://doi.org/10.1103/PhysRevD.80.064013
  • [16] LI F.-Y., YANG N., Phase and polarization state of high-frequency relic gravitational waves, Chinese Physics Letters 26(5), 2009: 050402. https://doi.org/10.1088/0256-307X/26/5/050402
  • [17] LI J., LIN K., LI F., ZHONG Y., The signal photon flux, background photons and shot noise in electromagnetic response of high-frequency relic gravitational waves, General Relativity and Gravitation 43(8), 2011: 2209-2222. https://doi.org/10.1007/s10714-011-1176-8
  • [18] LI FANG-YU, WEN HAO, FANG ZHEN-YUN, High-frequency gravitational waves having large spectral densities and their electromagnetic response, Chinese Physics B 22(12), 2013: 120402. https://doi.org/10.1088/1674-1056/22/12/120402
  • [19] WEN H., LI F., FANG Z., Electromagnetic response produced by interaction of high-frequency gravitational waves from braneworld with galactic-extragalactic magnetic fields, Physical Review D 89(10), 2014: 104025. https://doi.org/10.1103/PhysRevD.89.104025
  • [20] ZHONG Y.-H., LI J., ZHOU Y., LEI Q.-L., Electromagnetic resonance of astigmatic Gaussian beam to the high frequency gravitational waves, Chinese Physics Letters 33(10), 2016: 100402. https://doi.org/10.1088/0256-307X/33/10/100402
  • [21] ZHONG Y., LIU S., YANG P., Energy flux of a Gaussian beam in microwave band beyond the paraxial approximation, Optik 125(22), 2014: 6657-6660. https://doi.org/10.1016/j.ijleo.2014.08.125
  • [22] XIANG F., ZHANG L., CHEN T., ZHONG Y.-H., LI J., Transverse propagation characteristics and coherent effect of Gaussian beams, Chinese Physics Letters 37(6), 2020: 064101. https://doi.org/10.1088/0256-307X/37/6/064101
  • [23] ZHANG X., Laser Technology 13, 1989: 55.
  • [24] LIU X.L., FENG G.Y., LI W., TANG C., ZHOU S.H., Theoretical and experimental study on M-2 factor matrix for astigmatic elliptical Gaussian beam, Acta Physica Sinica 62(19), 2013: 194202. https://doi.org/10.7498/aps.62.194202
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93c0b88c-524e-42a9-9b9c-eb24c1d7b26a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.