PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Supercritical antisolvent method for recrystallization of HMX

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Supercritical antisolvent (SAS) method is an emerging technique for particle processing of high energetic materials. The study investigates the recrystallization of high energy material HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine) using SAS method. The effect of pressure, solution flow rate, supercritical antisolvent flow rate and temperature on particle size and morphology of HMX crystals has been studied with acetone as solvent and supercritical carbon dioxide as antisolvent. Stable and desirable 𝛽- polymorphic form of HMX could be obtained under certain process conditions and has been confirmed by FTIR spectroscopy. The experimental results show that 𝛽- polymorph of HMX is of rhombohedral morphology with mean particle size of 13.7 μm, as confirmed by SEM and particle size analyzer respectively.
Rocznik
Strony
165--170
Opis fizyczny
Bibliogr. 7 poz., wykr., tab.
Twórcy
  • Dr SSBUICET, Panjab University, Chandigarh, 160 014, India
autor
  • Dr SSBUICET, Panjab University, Chandigarh, 160 014, India
autor
  • TBRL, DRDO, Chandigarh, 160 030, India
autor
  • TBRL, DRDO, Chandigarh, 160 030, India
  • TBRL, DRDO, Chandigarh, 160 030, India
Bibliografia
  • 1. Bayat Y., Pourmortazavi S.M., Iravani H., Ahadi H., 2012. Statistical optimization of supercritical carbon dioxide antisolvent process for preparation of HMX nanoparticles. J. Supercrit. Fluids, 72, 248–254. DOI: 10.1016/j.supflu.2012.09.010.
  • 2. Kim C.K., Lee B.C., Lee Y.W., Kim H.S., 2009. Solvent effect on particle morphology in recrystallization of HMX (cyclotetramethylenetetranitramine) using supercritical carbon dioxide as antisolvent. Korean J. Chem. Eng., 26, 1125–1129. DOI: 10.1007/s11814-009-0187-6.
  • 3. Kumar R., Mahalingam H., Tiwari K.K., 2014. Selection of solvent in supercritical antisolvent process. APCBEE Procedia, 9, 181–186. DOI: 10.1016/j.apcbee.2014.01.032.
  • 4. Prosapio V., De Marco I., Reverchon E., 2018. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids, 138, 247–258. DOI: 10.1016/j.supflu.2018.04.021.
  • 5. Singh H., Jahagirdar N., Banerjee S., 2019. Sonochemically assisted synthesis of nano HMX. Defence Technol., 15, 837–843. DOI: 10.1016/j.dt.2019.04.010.
  • 6. Soni P., Sarkar C., Tewari R., Sharma T.D., 2011. HMX polymorphs: Gamma to beta phase transformation. J. Energetic Mater., 29, 261–279. DOI: 10.1080/07370652.2010.523756.
  • 7. Teipel U., 2005. Energetic materials: Particle processing and characterization. Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/3527603921.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93bf315f-86d6-411c-b077-81bde0bd42b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.