PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geophysical surveys and modelling for recognizing of gypsum karst

Identyfikatory
Warianty tytułu
PL
Badania geofizyczne i modelowanie dla rozpoznania krasu gipsowego
Języki publikacji
EN
Abstrakty
EN
Geophysical surveys are often used for examination of karst phenomena in limestone. This paper presents the research on gypsum karst which occurrence is much rarer. Non-invasive terrain surveys were carried out over known karst cavity in order to visualize karst phenomena developed around the void. Two geophysical methods that seems to be predestined for karst examination were selected, i.e. microgravimetry and georadar. For the interpretation of measured data numerical modelling was applied. Geophysical interpénétration depicted the presence of weathered material in the near surface zone and fractures and loose zones located over the karst cavity.
PL
Pomiary geofizyczne są często stosowane do badania krasu wapiennego. W artykule przedstawiono natomiast opis badań krasu gipsowego, którego występowanie jest o wiele rzadsze. Nieinwazyjne badania terenowe przeprowadzono nad znaną jaskinią krasową w celu zobrazowania zjawisk krasowych rozwijających się wokół pustki. Do badań wybrano dwie predystynowane do tego celu metody geofizyczne: mikrograwimetryczną i georadarową. Interpretację wyników badań geofizycznych przeprowadzono z wykorzystaniem modelowania numerycznego. Wyniki interpretacji wskazują, że w strefie przypowierzchniowej występuje warstwa zwietrzała, a nad pustką krasową występują strefy spękań i rozluźnień.
Rocznik
Tom
Strony
83--97
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology in Cracow, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics
  • Cracow University of Technology, Faculty of Environmental Engineering, Institute of Geotechnics
autor
  • AGH University of Science and Technology in Cracow, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics
Bibliografia
  • 1. A.S.T.M. 1999. Standard Guide for Selecting Surface Geophysical Methods. Designation D6429. American Society for Testing and Materials, Philadelphia.
  • 2. Annan A.P 1999. Practical Processing of GPR Data. Sensor and Software Inc., Canada.
  • 3. Annan A.P. 2001. Ground Penetrating Radar-Workshop Notes. Sensor and Software Inc., Canada.
  • 4. Bishop I., Styles P., Emsley S.J., Ferguson N.S. 1997. The Detection of Cavities Using the Microgravity Technique: Case Histories from Mining and Karstic Environments. Geological Society, Engineering Geology Special Publications, No. 12, pp. 153-166.
  • 5. Blakely R. 1991. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press.
  • 6. BSI 1999. British Standard Code of Practice for Site Investigations - BS5930. British Standards Institution, London.
  • 7. Cassidy N.J. 2008. GPR Attenuation and Scattering in a Nature Hydrocarbon Spill: A Modeling Study. Vadose Zone Journal, Vol. 7, No. 1, pp. 140-159.
  • 8. Chamberlain A.T., Sellers W., Proctor C, Coard R, 2000, Cave Detection in Limestone using Ground
  • 9. Penetrating Radar. Journal of Archaeol. Science. 27, pp. 957-964.
  • 10. Dortman N.B. 1984. Physical Properties of Rocks. Niedra Ed., Moscow (in Russian).
  • 11. Fajklewicz Z. 2007. Applied Gravity, AGH University of Science and Technology Press, Cracow, Poland (in Polish).
  • 12. Drozdzak R., Twardowski K. 2010. Dielectric Permittivity of Porous Media - Factors Which Influence Its Changes. Drilling Oil and Gas, Cracow, Poland (in Polish).
  • 13. Flis J. 1954. Gypsum Krast in Nida Gypsum Deposits, Institute of Geography - Polish Academy of Science, Geographic's works no. 1, Warsaw (in Polish).
  • 14. Gołębiowski T. 2004. Introductionto GPR Surveys Interpretation with Procedure of Numerical Modelling. Geological Review, Vol. 52, No. 7, pp. 563-568 (in Polish).
  • 15. Gołębiowski T. 2007. Numerical Modelling of GPR Wave Filed Using of FDTD Method. Geoinformatica Polonica, No. 8, pp. 23-35 (in Polish).
  • 16. Gołębiowski T. 2012. Application of the GPR Technique for Detection and Monitoring of Objects with Stochastical Distribution in the Geological Medium. AGH University of Science and Technology Press, Cracow, Poland (in Polish).
  • 17. Grimm R.E., Heggy E., Clifford S., Dinwiddie C, McGinnis R., Farrell D. 2006. Absorption and Scattering in Ground Penetrating Radar: Analysis of the Bishop Tuff. Journal of Geophysical Research, Vol. Ill, E06S02, 15p.
  • 18. Jol H.M. 2009. Ground Penetrating Radar: Theory and Applications. Elsevier Science Ed., Oxford, UK.
  • 19. Karczewski J. 2007. The Principle of GPR Method. AGH University of Science and Technology Press, Cracow, Poland (in Polish).
  • 20. Kasprzyk A. 1991. Analysis Lithofacial of Sulphate Tracks Builders Southern Margin of the Holy
  • 21. Cross Mountains. Geological Review, no. 4, PIG-PIB Ed., Warsaw, pp. 213-223 (in Polish).
  • 22. Kasprzyk A. 1993. Lothofacies and Sedimentation of the Badenian (Middle Miocen) Gypsum in the Northern Part of Carphatian Foredeep, Southern Poland. Ann. Soc. Geol. Pol., No. 63, pp. 33-84.
  • 23. Leucci G, De Giorgi L. 2010. Microgravimetric and Ground-Penetrating Radar Geophysical Methods to Map the Shallow Karstic Cavities Network in a Coastal Area (Marina Di Capilungo, Lecce, Italy). Exploration Geophysics, No. 41, pp. 178-188.
  • 24. Laptus A. 1992. Giant-Scale Cross-bedded Miocene Biocalcarenites in the Northern Margin of the Carpathian Foredeep. Ann. Soc. Geol. Pol., No. 62, pp. 149-172.
  • 25. Mochales T., Casas A.M., Pueyo E.L., Soriano M.A., Pueyo O., Román M.T., Pocoví A., Ansón D. 2008. Detection of Underground Cavities by Combining Gravity, Magnetic and Ground-Penetrating Radar Surveys: a Case Study from the Zaragoza Area, NE Spain, Environmental Geology, 53, pp. 1067-1077.
  • 26. Nowak W.A. 1986a. Nida Gypsum Deposits Physiographic Regionalization. SODF Ed., No. 14, pp. 23-33 (in Polish).
  • 27. Nowak W.A. 1986b. Krast in Nida Gypsum Deposits. SODF Ed., No. 14, pp. 87-117 (in Polish).
  • 28. Porzucek S. 2013. Loosenings and Cracks Detection in Rock Mass Located Above Anthropogenic Voids Using the Microgravity Method, AGH University of Science and Technology Press, Cracow, Poland (in Polish).
  • 29. ReflexW Manual 2013. SandmeierGeo. Karlsruhe, Germany.
  • 30. Rutkowski J. 1986. Geological Structure of Nida Gypsum Deposits. SODF Ed., No. 14, pp. 35-61 (in Polish).
  • 31. Rybakov M., Goldshmidt V, Fleischer L., Rotstein Y. 2001. Cave Detection and 4-D Monitoring: a Microgravity Case History Near the Dead Sea. The
  • 32. Leading Edge (Society of Exploration Geophysicists), 20(8), pp. 896-900.
  • 33. Sharma P.V 2004. Environmental and Engineering Geophysics. Cambridge University Press, Cambridge.
  • 34. Telford W.M., Geldart L. P., Sheriff R. E. 2004. Applied Geophysics, 2nd ed., Cambridge University Press, Cambridge.
  • 35. Turchinov I.I. 1997. Lithological conditions of the development of karst processes in the Carpathian Fore-deep Badenian gypsum. Przegląd Geologiczny, 45, pp. 803-806 (in Polish).
  • 36. Walaszczyk I. 1992. Turanian Through Santonian Deposit of the Central Polish Uplands, Their Facies Development, Inoceramid Paléontologie and Stratigraphy. Acta Geol. Pol., 42, 1-2, pp. 1-122.
  • 37. Woloszyn B.W. 1990. Cave in Ponidzie - Team of Landscape Parks. SODF Ed., No. 18, pp. 275-341 (in Polish).
  • 38. Yee K. 1966. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. Transactions on Antennas and Propagation, No. 14, IEEE Ed., pp. 302-307
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93bd974e-a59b-44a9-bd1f-c49731f593c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.