PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geophysical investigation on the subsoil characteristics of the Dendam Tak Sudah Lake site in Bengkulu City, Indonesia

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bengkulu City in Indonesia is one of the areas prone to earthquakes, yet it has developed increasingly in the last five years. One of the prospective areas in Bengkulu City, called Singaran Pati, is located close to the Dendam Tak Sudah Lake, a natural tropical lake. This research aims to interpret geological characteristics for the spatial plan development in the study area. Microtremor measurement and site investigation are implemented to observe the geophysical and geological characteristics of the study site. Inversion analysis using Monte Carlo simulated annealing is conducted to generate a shear wave velocity profile. Based on the shear wave velocity, the identified bedrock surface is illustrated in a 3D geological model. A simple analysis of the natural period to estimate allowable structural building storeys is also performed. Results show that the depth of the bedrock surface is around 4.5-147 m. The study area is dominantly categorised as Site Classes C and D. Low- to medium-rise buildings are appropriate to construct based on the geophysical and geotechnical information. The findings can provide preliminary guidelines on geotechnical and geological information for the seismic site conditions in the study area in Bengkulu City.
Czasopismo
Rocznik
Strony
893--913
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, University of Bengkulu, Bengkulu 38371, Indonesia
autor
  • Department of Civil Engineering, Faculty of Engineering, University of Bengkulu, Bengkulu 38371, Indonesia
autor
  • Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan
autor
  • Department of Civil Engineering, Faculty of Engineering, University of Bengkulu, Bengkulu 38371, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, University of Bengkulu, Bengkulu 38371, Indonesia
  • Department of Civil, Environmental and Applied System Engineering, Faculty of Environmental and Urban Engineering, Kansai University, Osaka 564-8680, Japan
  • Centre of Excellence in Geotechnical and Geoenvironmental Engineering, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
Bibliografia
  • 1. Adampira M, Alielahi H, Panji M, Koohsari H (2015) Comparison of equivalent linear and nonlinear methods in seismic analysis of liquefiable site response due to near-fault incident waves: a case study. Arab J Geosci 8(5):3103-3118. https://doi.org/10.1007/ s12517-014-1399-6
  • 2. Alonso-Pandavenes O, Torres G, Torrijo FJ, Garzón-Roca J (2022) Basement tectonic structure and sediment thickness of a valley defined using HVSR geophysical investigation, Azuela valley, Ecuador. Bull Eng Geol Environ 81(5):1-14. https://doi.org/10. 1007/s10064-022-02679-y
  • 3. Anbazhagan P, Sheikh MN, Parihar A (2013) Influence of rock depth on seismic site classification for shallow bedrock regions. Nat Hazard Rev 14(2):108-121. https://doi.org/10.1061/(ASCE)NH. 1527-6996.0000088
  • 4. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827-837. https://doi.org/10.1111/j.1365-246X.2006.03154.x
  • 5. Chandran D, Anbazhagan P (2020) 2D nonlinear site response analysis of typical stiff and soft soil sites at shallow bedrock region with low to medium seismicity. J Appl Geophys 179:104087. https:// doi.org/10.1016/j.jappgeo.2020.104087
  • 6. Development Planning Agency at Sub-National Level (2012) Local Regulation No. 14, 2012: Spatial Plans of Bengkulu City for Period 2012-2032. Bengkulu: Development Planning Agency at Sub-National Level, Bengkulu City, Indonesia
  • 7. El-Hady S, Fergany EAA, Othman A, Mohamed GEA (2012) Seismic microzonation of Marsa Alam, Egypt using inversion HVSR of microtremor observations. J Seismolog 16(1):55-66. https://doi. org/10.1007/s10950-011-9249-4
  • 8. Farid M, Mase LZ (2020) Implementation of Seismic Hazard Mitigation on The Basis of Ground Shear Strain Indicator for Spatial Plan of Bengkulu City, Indonesia. Int J Geomate 18(69):199-207. https://doi.org/10.21660/2020.69.24759
  • 9. Fat-Helbary RES, El-Faragawy KO, Hamed A (2019) Application of HVSR technique in the site effects estimation at the south of Marsa Alam city, Egypt. J Afr Earth Sci 154:89-100. https://doi. org/10.1016/j.jafrearsci.2019.03.015
  • 10. Garcia-Jerez A, Piňa-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67-78. https://doi.org/10.1016/j.cageo.2016.06.016
  • 11. Gosar A (2010) Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Nat Hazard 10(4):761-772. https://doi.org/10.5194/nhess-10-761-2010
  • 12. Grandjean G, Gourry JC, Sanchez O, Bitri A, Garambois S (2011) Structural study of the Ballandaz landslide (French Alps) using geophysical imagery. J Appl Geophys 75(3):531-542. https://doi. org/10.1016/j.jappgeo.2011.07.008
  • 13. Hollender F, Cornou C, Dechamp A, Oghalaei K, Renalier F, Mau-froy E, Sicilia D (2018) Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bull Earthq Eng 6(6):2337-2365. https://doi.org/10. 1007/s10518-017-0135-5
  • 14. Koçkar MK, Akgün H (2012) Evaluation of the site effects of the Ankara basin, Turkey. J Appl Geophys 83:120-134. https://doi. org/10.1785/BSSA0860061692
  • 15. Kudo K (1995) Practical estimates of site response state of art report. In: Proceedings of the 5th international conference on seismic zonation, Nice
  • 16. Lachet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s Nakamura’s technique. J Phys Earth 42(5):377-397. https://doi.org/10.4294/ jpe1952.42.377
  • 17. Lachet C, Hatzfeld D, Bard PY, Theodulidis N, Papaioannou C, Sav-vaidis A (1996) Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bull Seismol Soc Am 86(6):1692-1703
  • 18. Lestari DA, Susiloningtyas D, Supriatna S (2020) Spatial dynamics model of land availability and population growth prediction in Bengkulu City. Indones J Geogr 52(3):427-436. https://doi.org/ 10.22146/ijg.44591
  • 19. Likitlersuang S, Plengsiri P, Mase LZ, Tanapalungkorn W (2020) Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bull Eng Geol Env 79(1):39-51. https://doi.org/10.1007/s10064-019-01560-9
  • 20. Mascandola C, Massa M, Barani S, Albarello D, Lovati S, Martelli L, Poggi V (2019) Mapping the seismic bedrock of the Po Plain (Italy) through ambient-vibration monitoring. Bull Seismol Soc Am 109(1):164-177. https://doi.org/10.1785/0120180193
  • 21. Mase LZ (2017) Liquefaction potential analysis along coastal area of Bengkulu Province due to the 2007 Mw 8.6 Bengkulu earthquake. J Eng Technol Sci 49(6):721-736. https://doi.org/10.5614/j.eng. technol.sci.2017.49.6.2
  • 22. Mase LZ (2018) Reliability study of spectral acceleration designs against earthquakes in Bengkulu City, Indonesia. Int J Technol 9(5):910-924. https://doi.org/10.14716/ijtech.v9i5.621
  • 23. Mase LZ (2020) Seismic hazard vulnerability of Bengkulu City, Indonesia, based on deterministic seismic hazard analysis. Geotech Geol Eng 38(5):5433-5455. https://doi.org/10.1007/ s10706-020-01375-6
  • 24. Mase LZ (2021) A note of ground motion interpretation and site response analysis during the 2007 Bengkulu-Mentawai earthquakes, Indonesia. Arab J Geosci 14(2):1-14. https://doi.org/10. 1007/s12517-020-06344-0
  • 25. Mase LZ (2022) Local seismic hazard map based on the response spectra of stiff and very dense soils in Bengkulu city, Indonesia. Geod Geodyn 13(6):573-584. https://doi.org/10.1016/j.geog.2022.05.003
  • 26. Mase LZ, Likitlersuang S (2021) Implementation of seismic ground response analysis in estimating liquefaction potential in Northern Thailand. Indones J Geosci 8(3):371-383. https://doi.org/10. 17014/ijog.8.3.371-383
  • 27. Mase LZ, Likitlersuang S, Tobita T (2018) Analysis of seismic ground response caused during strong earthquake in Northern Thailand. Soil Dyn Earthq Eng 114:113-126. https://doi.Org/10.1016/j.soild yn.2018.07.006
  • 28. Mase LZ, Likitlersuang S, Tobita T (2019) Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan. Mar Geo-resour Geotechnol 37(7):765-774. https://doi.org/10.1080/10641 19X.2018.1485793
  • 29. Mase LZ, Agustina S, Anggraini PW (2020a) Seismic hazard microzonation of ground response parameters in Bengkulu City, Indonesia. In: IOP conference series: earth and environmental science, IOP Publishing, vol 528, no 1, p. 012051. https://doi.org/10.1088/ 1755-1315/528/1/012051
  • 30. Mase LZ, Likitlersuang S, Tobita T, Chaiprakaikeow S, Soralump S (2020b) Local site investigation of liquefied soils caused by earthquake in Northern Thailand. J Earthq Eng 24(7):1181-1204. https://doi.org/10.1080/13632469.2018.1469441
  • 31. Mase LZ, Likitlersuang S, Tobita T (2021a) Ground motion parameters and resonance effect during strong earthquake in northern Thailand. Geotech Geol Eng 39(3):2207-2219. https://doi.org/10. 1007/s10706-020-01619-5
  • 32. Mase LZ, Refrizon R, Anggraini PW (2021b) Local site investigation and ground response analysis on downstream area of Muara Bangkahulu River, Bengkulu City, Indonesia. Indian Geotech J 51(5):952-966. https://doi.org/10.1007/s40098-020-00480-w
  • 33. Mase LZ, Sugianto N, Refrizon (2021b) Seismic hazard microzonation of Bengkulu city, Indonesia. Geoenviron Disasters 8(1):1-17. https://doi.org/10.1186/s40677-021-00178-y
  • 34. Mase LZ, Likitlersuang S, Tobita T (2022a) Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. J Earthq Eng 26(4):2023-2050. https://doi.org/10. 1080/13632469.2020.1751346
  • 35. Mase LZ, Tanapalungkorn W, Likitlersuang S, Ueda K, Tobita T (2022b) Liquefaction analysis of Izumio sands under variation of ground motions during strong earthquake in Osaka, Japan. Soils Found 62(5):101218. https://doi.org/10.1016/j.sandf.2022.101218
  • 36. Mase LZ, Agustina S, Farid M, Supriani F, Tanapalungkorn W, Likitlersuang S (2023) Application of simplified energy concept for liquefaction prediction in Bengkulu City, Indonesia. Geotech Geol Eng. https://doi.org/10.1007/s10706-023-02388-7
  • 37. Mayne PW (2001) Stress-strain-strength-flow parameters from enhanced in-situ tests. In: Proceedings of international conference on in-situ measurement of soil properties & case histories (in-situ 2001) Bali, Indonesia, pp 27-48
  • 38. Miller RD, Xia J, Park CB, Ivanov J, Williams E (1999) Using MASW to map bedrock in Olathe, Kansas. In: SEG technical program, expanded abstracts 1999, 433-436. Society of Exploration Geophysicists
  • 39. Mirzaoglu M, Dykmen U (2003) Application of microtremor to seismic microzoning procedure. J Balkan Geophys Soc 6(3):143-156
  • 40. Misliniyati R, Mase LZ, Syahbana AJ, Soebowo E (2018) Seismic hazard mitigation for Bengkulu Coastal area based on site class analysis. In: IOP conference series: earth and environmental science, IOP Publishing, vol 212, no 1, p 012004. https://doi.org/10. 1088/1755-1315/212/1/012004
  • 41. Misliniyati R, Mase LZ, Irsyam M, Hendriawan H, Sahadewa A (2019) Seismic response validation of simulated soil models to vertical array record during a strong earthquake. J Eng Technol Sci 51(6):772-790. https://doi.org/10.5614/j.eng.technol.sci.2019.51.6.3
  • 42. Nakamura Y (1989) A method for dynamic characteristic estimation of subsurface using microtremor on ground surface. Q Rep Railw Tech Res 30(1):25-53
  • 43. National Earthquake Hazards Reduction Program (NEHRP) (1998) Recommended provisions for seismic regulation for new buildings and other structures: part 1-provisions and part 2-commentary, FEMA 302, Texas
  • 44. Okada H, Suto K (2003) The microtremor survey method. Society of Exploration Geophysicists
  • 45. Pamuk E, Akgün M, Özdağ ÖC, Gönenç T (2017) 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey. J Appl Geophys 137:104-117. https://doi.org/10. 1016/j.jappgeo.2016.12.016
  • 46. Parolai S, Picozzi M, Strollo A, Pilz M, Giacomo DD, Liss B, Bindi D (2009) Are transients carrying useful information for estimating H/V spectral ratios? In: Mucciarelli M, Herak M, Cassidy J (eds) Increasing seismic safety by combining engineering technologies and seismological data. NATO science for peace and security series C: environmental security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9196-4_3
  • 47. Perez-Estay N, Molina-Piernas E, Roquer T, Aravena D, Vargas JA, Morata D, Elizalde D (2022) Shallow anatomy of hydrothermal systems controlled by the Liquiňe-Ofqui fault system and the Andean transverse faults: geophysical imaging of fluid pathways and practical implications for geothermal exploration. Geothermics 104:102435. https://doi.org/10.1016/j.geothermics.2022.102435
  • 48. Pinzón LA, Pujades LG, Macau A, Carreňo E, Alcalde JM (2019) Seismic site classification from the horizontal-to-vertical response spectral ratios: use of the Spanish strong-motion database. Geosciences 9(7):294. https://doi.org/10.3390/geosciences9070294
  • 49. Prawirodirdjo L, Bock Y, Genrich JF, Puntodewo SSO, Rais J, Subarya C, Sutisna DS (2000) One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys. J Geophys Res Solid Earth 105(B12):28343-28361. https://doi.org/10.1029/2000JB900150
  • 50. Ridwan M, Widiyantoro S, Irsyam M, Afnimar P, Yamanaka H (2017) Development of an engineering bedrock map beneath Jakarta based on microtremor array measurements. Geol Soc Lond Spec Publ 441(1):153-165. https://doi.org/10.1144/SP441
  • 51. Salencon J (2001) Handbook of continuum mechanics: general concepts, thermoelasticity. Springer, Berlin
  • 52. SESAME (2004) Guidelines for the implementation of H/V spectral ratio technique on ambient vibrations: measurements, processing, and interpretations. http://sesame-fp5.obs.ujf-grenoble.fr/Deliv rables/Del-D23-HV_User_Guidelines.pdf. Accessed 25 Sept 2016
  • 53. Sukkarak R, Tanapalungkorn W, Likitlersuang S, Ueda K (2021) Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils Found 61(5):1302-1318. https://doi.org/ 10.1016/j.sandf.2021.07.003
  • 54. Thitimakorn T, Channoo S (2012) Shear wave velocity of soils and NEHRP site classification map of Chiangrai city, Northern Thailand. Electron J Geotech Eng 17:2891-2904
  • 55. Tün M, Pekkan E, Özel O, Guney Y (2016) An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophys J Int 207(1):589-607. https:// doi.org/10.1093/gji/ggw294
  • 56. Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35(9):L09301. https://doi.org/10.1029/2008GL033256
  • 57. Wills CJ, Gutierrez CI, Perez FG, Branum DM (2015) A next generation Vs30 map for California based on geology and topography. Bull Seismol Soc Am 105(6):3083-3091. https://doi.org/10.1785/ 0120150105
  • 58. Yan F, Shangguan W, Zhang J, Hu B (2020) Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci Data 7(1):1-13. https://doi.org/10.1038/s41597-019-0345-6
  • 59. Yoshida N (2015) Seismic ground response analysis. Springer, Dordrecht
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93b5fa5d-926f-4ba7-9e5b-84112e9e36fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.