PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum site selection for oil spill response center in the Marmara Sea using the AHP-TOPSIS method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to determine the optimum location for an oil spill response center in the Marmara Sea. The analytic hierarchy process (AHP) and technique for the order of preference by similarity to ideal solution (TOPSIS) method as the most preferred multi-criteria decision-making (MCDM) technique were used. The results reveal that the LOC criterion and PRA sub-criterion have the highest effects on the optimal location selection of the oil spill response center. According to the results, the most suitable location for the oil spill response center in the region is Izmit Bay Entrance. This location has been proposed for the response headquarters to manage the whole operation with the assistance of auxiliary installations in the area. In this study, only technical and operational variables are taken into account, but political and administrative criteria are excluded.
Rocznik
Strony
38--49
Opis fizyczny
Bibliogr. 54 poz., mapki, rys., tab.
Twórcy
autor
  • Dokuz Eylul University,Turkey, Maritime Faculty
autor
  • Dokuz Eylul University,Turkey, Maritime Faculty
autor
  • Dokuz Eylul University,Turkey, Maritime Faculty
Bibliografia
  • 1. Aktar, M., ęemen, I. & Yilmaz, Y. (2017). Fault structures in Marmara sea (Turkey) and their connection to earthquake generation processes, Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region, pp. 225.
  • 2. Akten, N. (2004). Analysis of shipping casualties in the Bosphorus, The Journal of Navigation, 57, 3, pp. 345-356.
  • 3. Alpar, B. & Unlu, S. (2007). Petroleum residue following Volgoneft-248 oil spill at the coasts of the suburb of Florya, Marmara Sea (Turkey): A Critique, Journal of Coastal R., 23, 2, pp. 515-521.
  • 4. Başar, E. (2010). Weathering and oil spill simulations in the aftermath of tanker accidents at the junction points in the Marmara Sea, Fresenius Environmental Bulletin, 19, 2, pp. 260-265.
  • 5. Basar, E., Kose, E. & Guneroglu, A. (2006). Finding risky areas for oil spillage after tanker accidents at Istanbul strait, International Journal of Environment and Pollution, 27, 4, pp. 388-400.
  • 6. Belardo, S., Harrald, J., Wallace, W.A. & Ward, J. (1984). A partial covering approach to siting response resources for major maritime oil spills, Management Science, 30, 10, pp. 1184-1196.
  • 7. Beskese, A., Demir, H.H., Ozcan, H.K. & Okten, H.E. (2015). Landfill site selection using fuzzy AHP and fuzzy TOPSIS: A case study for Istanbul, Environmental Earth Sciences, 73, 7, pp. 3513-3521.
  • 8. Birpinar, M.E., Talu, G.F. & Gonenęgil, B. (2009). Environmental effects of maritime traffic on the Istanbul Strait, Environmental Monitoring Assessment, 152, pp. 13-23.
  • 9. Bolat, F. (2011). An analysis of Marmara region ports potentials as of main hub port features (Doctoral dissertation). Istanbul Technical University, Istanbul, Turkey. (in Turkish)
  • 10. BOSMAR (2017). Tanker Terminals at Marmara Sea, (http:// osmaragency.com/marmara-sea/(05.02.2018)).
  • 11. Bozkurtoglu, S.N.E. (2017). Modeling oil spill trajectory in Bosphorus for contingency planning, Marine Pollution Bulletin, 123, pp. 57-72.
  • 12. Çelik, M. & Topcu, Y.l. (2009). Use of an ANP to prioritize managerial responsibilities of maritime stakeholders in environmental incidents: An oil spill case, Transportation Research Part D, 14, pp. 502-506.
  • 13. Charnes, A., Cooper, W.W., Karwan, K.R. & Wallace, W.A. (1979). A chance-constrained goal programming model to evaluate response resources for marine pollution disasters, Journal of Environmental Economics and Management, 6, 3, pp. 244-274.
  • 14. Chen, S.J. & Hwang, C.L. (1992). Fuzzy multiple attribute decision making methods, In: Fuzzy multiple attribute decision making (pp. 289-486). Springer, Berlin, Heidelberg.
  • 15. Church, R. & Re Velle, C. (1974). The maximal covering location problem. In: Papers of the Regional Science Association. Springer, Verlag.
  • 16. Coskun, S.S. (2016). Selection of residential construction site using geographic information system based AHP rating model, Journal Eurasian Academy of Sciences Eurasian Business & Economics, 2, pp. 530-540.
  • 17. Dagdeviren, M. (2002). Developing a new analytical job evaluation technique using analytical hierarchy process (Master Thesis). Gazi University, Ankara, Turkey. (in Turkish)
  • 18. Dagdeviren, M., Eraslan, E., Kurt, M., & Dizdar, E.N. (2005). An alternative approach to a supplier selection problem analytical network process, Teknoloji, 8, 2, pp. 115-122. (in Turkish)
  • 19. Dogan, E. & Burak S. (2007). Ship-originated pollution in the Istanbul Strait (Bosphorus) and Marmara Sea, Journal of Coastal Research, 23, 2, pp. 388-394.
  • 20. Ertugrul, I. & Karakasoglu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection, The International Journal of Advanced Manufacturing Technology, 39, 7-8, pp. 783-795.
  • 21. Essiz, B. & Dagkiran, B. (2017). Accidental risk analyses of the Istanbul and Canakkale straits, In: IOP Conference Series: Earth and Environmental Science, IOP Publishing.
  • 22. Gumusay, M.U., Koseoglu, G. & Bakirman, T. (2016). An assessment of site suitability for marina construction in Istanbul, Turkey, using GIS and AHP multicriteria decision analysis, Environmental Monitoring and Assessment, 188, 12, pp. 677.
  • 23. Guven, C.K., ęubukęu, N., Ipteę, M., Ozyalvaę, M., Cumali, S., Nesimigil, F. & Yalęin, A. (2007). Oil and detergent pollution in surface waters and sediments of the Istanbul Strait, Golden Horn, Izmit Bay (Sea of Marmara), Çanakkale Strait, Aliaga (Aegean Sea) in 2005-2007, Journal of Black Sea/Mediterranean Environment, 14, pp. 205-220.
  • 24. Guven, K.C., Yazici, Z., Ünlü, S., Okus, E. & Dogan, E. (1996). Oil pollution on sea water and sediments of Istanbul Strait, caused by Nassia tanker acciden, Journal of Black Sea/Mediterranean Environment, 2, 1.
  • 25. Ha, M.J. (2018). Modeling for the allocation of oil spill recovery capacity considering environmental and economic factors, Marine Pollution Bulletin, 126, pp. 184-190.
  • 26. Hanine, M., Boutkhoum, O., El Maknissi, A., Tikniouine, A. & Agouti, T. (2016). Decision making under uncertainty using PEES-fuzzy AHP-fuzzy TOPSIS methodology for landfill location selection, Environment Systems and Decisions, 36, 4, pp. 351-367.
  • 27. Hanine, M., Boutkhoum, O., Tikniouine, A. & Agouti, T. (2017). An application of OLAP/GIS-Fuzzy AHP-TOPSIS methodology for decision making: Location selection for landfill of industrial wastes as a case study, KSCE Journal of Civil Engineering, 21, 6, pp. 2074-2084.
  • 28. Hong, L. & Xiaohua, Z. (2011). Study on location selection of multi-objective emergency logistics center based on AHP, Procedia Engineering, 15, pp. 2128-2132.
  • 29. Hwang, C.L. & Yoon, K. (1981). Multiple attribute decision making: methods and applications: a state-of-the-art survey, Springer- -Verlag, New York.
  • 30. Iakovou, E., Ip, C.M., Douligeris, C. & Korde, A. (1997). Optimal location and capacity of emergency cleanup equipment for oil spill response, European Journal of Operational Research, 96, 1, pp. 72-80.
  • 31. IHS (2017). The module of Maritime Intelligence Risk Suite: Marmara Sea Region Traffic density and risk visualization. U.K.
  • 32. ITOPF (International Tanker Owners Pollution Federation Limited). (2002). Contingency Planning for Marine Spills, Technical information paper. (http://www.itopf.com/fileadmin/data/ Documents/TIPS%20TAPS/TIP16 Contingency Planning for Marine Oil Spills.pdf./(29.12.2017)).
  • 33. Kharat, M.G., Kamble, S.J., Raut, R.D., Kamble, SS. & Dhume, S.M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach, Modeling Earth Systems and Environment, 2, 2, pp. 53.
  • 34. Nordvik, A.B. (1999). Time window-of-opportunity strategies for oil spill planning and response, Pure and Applied Chemistry, 71, 1, pp. 5-16.
  • 35. O’Brien, M.L., Jones, R. & Moore, D.M. (2017). Preparedness decision making in offshore oil and gas-how much is enough? In: International Oil Spill Conference Proceedings. Longbeach, California.
  • 36. Olson, D.L. (2004). Comparison of weights in TOPSIS models, Mathematical and Computer Modeling, 40, 7-8, pp. 721-727.
  • 37. Ors, H. (2003). Oil transport in the Turkish Straits system: A simulation of contamination in the Istanbul Strait, Energy Sources, 25, 11, pp. 1043-1052.
  • 38. Otay, E.N. & Yenigun, O. (2000). Volgoneft-248 oil spill in the Marmara Sea, In: Proceedings of 2nd International Conference on Oil Spills in the Mediterranean and Black Sea Regions.
  • 39. Psaraftis, H.N., Tharakan, G.G. & Ceder, A. (1986). Optimal response to oil spills: the strategic decision case, Operations Research, 34, 2, pp. 203-217.
  • 40. Saaty, T.L. & Vargas, L.G. (1982). The logic of priorities: applications in business, energy, health, and transportation, Kluwer-Nijhoff, The Hague.
  • 41. Saaty, T.L. (1980). The analytic hierarchy process: planning, priority setting, resources allocation, McGraw, New York.
  • 42. Soltanalizadeh, A., Ramezanzadeh, A. & Jalali, M.E. (2014). Determining appropriate natural caves for underground crude oil storage by admixture FAHP and TOPSIS methods, Journal of Engineering Geology, 8, 3, pp. 2239-2260.
  • 43. Srinivasa, A.V. & Wilhelm, W.E. (1997). A procedure for optimizing tactical response in oil spill clean-up operations, European Journal of Operational Research, 102, 3, pp. 554-574.
  • 44. Timor, M. (2011). Analytic hierarchy process, Türkmen Kitabevi, Istanbul. (in Turkish)
  • 45. TMRCC (Turkish Maritime Rescue Coordination Center), (2017). Ship accident statistical data of Marmara Sea. Technical information paper, Turkey.
  • 46. Toz, A., Koseoglu, B. & Sakar, C. (2016). Numerical modelling of oil spill in New York Bay, Archives of Environmental Protection, 42, 4, pp. 22-31.
  • 47. Tugrul, S., Besiktepe, T. & Salihoglu, I. (2002). Nutrient exchange fluxes between the Aegean and Black Seas through the Marmara Sea, Mediterranean Marine Science, 3, 1, pp. 33-42.
  • 48. Unlu, S. (2007). Comparative analytical data in the source determination of unknown spilled oil in the Haydarpasa Port (Marmara Sea), Turkey, Bulletin of Environmental Contamination Toxicology,78, pp. 363-367.
  • 49. Usluer, H.B. & Alkan, B.G. (2016). Importance of the marine science and charting about environmental planning, management and policies at the Turkish straits, European Journal of Sustainable Development Research, 1, 1, pp. 16-25.
  • 50. Verma, M., Gendreau, M. & Laporte, G. (2013). Optimal location and capability of oil-spill response facilities for the south coast of Newfoundland, Omega, 41, 5, pp. 856-867.
  • 51. Wang, H., Xu, J., Zhao, W.& Zhang, J. (2014). Effects and risk evaluation of oil spillage in the sea areas of Changxing Island, International Journal of Environmental Research and Public Health, 11, 8, pp. 8491-8507.
  • 52. WWF (World Wildlife Found), (2007). Oil spill response challenge in Arctic Region. Technical Report. Nuka Research and Planning Group, LLC, October 2007.
  • 53. Yap, J.Y., Ho, C.C. & Ting, C.Y. (2017). Analytic Hierarchy Process (AHP) for business site selection. The 6th International Conference on Computer Science and Computational Mathematics, Kuala Lumpur, Malaysia.
  • 54. Yari, M., Monjezi, M. & Bagherpour, R. (2013). Selecting the most suitable blasting pattern using AHP-TOPSIS method: Sungun copper mine, Journal of Mining Science, 49, 6, pp. 967-975.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93b41857-0ba7-4d0f-869b-c6b1ef825b84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.