Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an erbium-doped fiber amplifier (EDFA) based adaptive return-to-zero on-off keying (RZ-OOK) transmission for free-space optical (FSO) communication. EDFA has the characteristics of average power limitation. Therefore, the transmitted RZ-OOK duty cycle is varied for accomplishing pulse power variations relying on determined average signal-to-noise ratio of received signal. Thus, the atmospheric turbulent effects can be compensated by this type of adaptive RZ-OOK transmission. The channel models with different turbulence effects are established, and the proposed technique is validated in simulation. The simulation results illustrate that the communication quality of system is considerably enhanced by the proposed technique compared with fixed threshold decision and adaptive threshold decision.
Czasopismo
Rocznik
Tom
Strony
179--188
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
autor
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Bibliografia
- [1] FERRARO M.S., MAHON R., RABINOVICH W.S., COFFEE A.G., MURPHY J.L., DEXTER J.L., FREEMAN W.T., Adaptive subcarrier intensity modulation for free space optical communication, Optical Engineering 61(6), 2022: 066105. https://doi.org/10.1117/1.OE.61.6.066105
- [2] VISHWAKARMA N., SWAMINATHAN R., On the capacity performance of hybrid FSO/RF system with adaptive combining over generalized distributions, IEEE Photonics Journal 14(1), 2022: 7305712. https://doi.org/10.1109/JPHOT.2021.3135115
- [3] HONG Y.Q., SHIN W.H., HAN S.K., Enhancement of SOA-based scintillation mitigation by PS-OOK transmission in FSO communication, IEEE Photonics Journal 12(4), 2020: 7903510. https://doi.org/ 10.1109/JPHOT.2020.2996600
- [4] SAMY R., YANG H.-C., RAKIA T., ALOUINI M.-S., Ergodic capacity analysis of satellite communication systems with SAG-FSO/SH-FSO/RF transmission, IEEE Photonics Journal 14(5), 2022: 7347909. https://doi.org/10.1109/JPHOT.2022.3201046
- [5] ZHU X., KAHN J.M., Free-space optical communication through atmospheric turbulence channels, IEEE Transactions on Communications 50(8), 2002: 1293-1300. https://doi.org/10.1109/ TCOMM.2002.800829
- [6] CHEN C., PAN S., NI X., YANG H., WANG T., LIU Z., Capacity of optical wireless channels in atmospheric turbulence with transmission power adaptation based on fading reciprocity, [In] 2018 10th International Conference on Advanced Infocomm Technology (ICAIT), Stockholm, Sweden, 2018: 72-77. https://doi.org/10.1109/ICAIT.2018.8686625
- [7] LIU X., FANG J., XIAO S., ZHENG L., HU W., Adaptive probabilistic shaping using polar codes for FSO communication, IEEE Photonics Journal 14(1), 2022: 7913806. https://doi.org/10.1109/ JPHOT.2022.3143112
- [8] TSIFTSIS T.A., SANDALIDIS H.G., KARAGIANNIDIS G.K., UYSAL M., FSO links with spatial diversity over strong atmospheric turbulence channels, [In] 2008 IEEE International Conference on Communications, Beijing, China, 2008: 5379-5384. https://doi.org/10.1109/ICC.2008.1008
- [9] YUKSEL H., MILNER S., DAVIS C., Aperture averaging for optimizing receiver design and system performance on free-space optical communication links, Journal of Optical Networking 4(8), 2005: 462-475. https://doi.org/10.1364/JON.4.000462
- [10] ZHANG Y., WANG P., LIU T., GUO L., LI Y., WANG W., Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence, Optics Express 26(17), 2018: 22182-22196. https://doi.org/10.1364/OE.26.022182
- [11] LI M., CVIJETIC M., TAKASHIMA Y., YU Z., Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics, Optics Express 22(25), 2014: 31337-31346. https://doi.org/10.1364/OE.22.031337
- [12] CHEN M., LIU C., RUI D., XIAN H., Experimental results of atmospheric coherent optical communications with adaptive optics, Optics Communications 434, 2019: 91-96. https://doi.org/10.1016/ j.optcom.2018.10.013
- [13] CHOI K., CHEUN K., JUNG T., Adaptive PN code acquisition using instantaneous power-scaled detection threshold under Rayleigh fading and pulsed Gaussian noise jamming, IEEE Transactions on Communications 50(8), 2002: 1232-1235. https://doi.org/10.1109/TCOMM.2002.801494
- [14] NOURI H., UYSAL M., Adaptive MIMO FSO communication systems with spatial mode switching, Journal of Optical Communications and Networking 10(8), 2018: 686-694. https://doi.org/10.1364/ JOCN.10.000686
- [15] DUEL-HALLEN A., Fading channel prediction for mobile radio adaptive transmission systems, Proceedings of the IEEE 95(12), 2007: 2299-2313. https://doi.org/10.1109/JPROC.2007.904443
- [16] NOURI H., SAIT S.M., UYSAL M., Adaptive modulation for FSO IM/DD systems with multiple transmitters and receivers, IEEE Communications Letters 27(2), 2023: 586-590. https://doi.org/10.1109/ LCOMM.2022.3222992
- [17] FATIMA K., MUHAMMAD S.S., LEITGEB E., Adaptive coded modulation for FSO links, [In] 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, Poland, 2012: 1-4. https://doi.org/10.1109/CSNDSP.2012.6292700
- [18] SAFI H., SHARIFI A.A., DABIRI M.T., ANSARI I.S., CHENG J., Adaptive channel coding and power control for practical FSO communication systems under channel estimation error, IEEE Transactions on Vehicular Technology 68(8), 2019: 7566-7577. https://doi.org/10.1109/TVT.2019.2916843
- [19] JAISWAL A., JAIN V.K., KAR S., Adaptive coding and modulation (ACM) technique for performance enhancement of FSO link, [In] 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 2016: 53-57. https://doi.org/10.1109/CMI.2016.7413709
- [20] NGUYEN T.V., LE H.D., DANG N.T., PHAM A.T., On the design of rate adaptation for relay-assisted satellite hybrid FSO/RF systems, IEEE Photonics Journal 14(1), 2022: 7304211. https://doi.org/ 10.1109/JPHOT.2021.3130720
- [21] TAKAHASHI N., HIRONO T., AKASHI H., TAKAHASHI S., SASAKI T., An output power stabilized erbium-doped fiber amplifier with automatic gain control, IEEE Journal of Selected Topics in Quantum Electronics 3(4), 1997: 1019-1026. https://doi.org/10.1109/2944.649533
- [22] KHAN A.N., SAEED S., NAEEM Y., ZUBAIR M., MASSOUD Y., YOUNIS U., Atmospheric turbulence and fog attenuation effects in controlled environment FSO communication links, IEEE Photonics Technology Letters 34(24), 2022: 1341-1344. https://doi.org/10.1109/LPT.2022.3217072
- [23] WANG Z., ZHONG W.-D., YU C., Performance improvement of OOK free-space optical communication systems by coherent detection and dynamic decision threshold in atmospheric turbulence conditions, IEEE Photonics Technology Letters 24(22), 2012: 2035-2037. https://doi.org/10.1109/ LPT.2012.2218652
- [24] CHEN D., LIU Y., GAO Y., CAO Y., Adaptive transmission based on MIMO mode switching over Malaga turbulence channel with pointing error, IEEE Photonics Journal 15(2), 2023: 7301111. https://doi.org/10.1109/JPHOT.2023.3243931
- [25] RAKIA T., YANG H.-C., GEBALI F., ALOUINI M.-S., Power adaptation based on truncated channel inversion for hybrid FSO/RF transmission with adaptive combining, IEEE Photonics Journal 7(4), 2015: 7903012. https://doi.org/10.1109/JPHOT.2015.2460118
- [26] KAUSHAL H., KADDOUM G., Optical communication in space: Challenges and mitigation techniques, IEEE Communications Surveys & Tutorials 19(1), 2017: 57-96. https://doi.org/10.1109/ COMST.2016.2603518
- [27] AARTHI G., REDDY G.R., Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging, Optics Communications 410, 2018: 896-902. https://doi.org/10.1016/j.optcom.2017.11.063
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93b30f5d-2cab-41d4-90cb-57d395d58baf