Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A far-field stress model based on theory of elasticity and utilizing the Mohr-Coulomb criterion is commonly used in the petroleum industry as a reliable method for present-day stress profiling. We have analysed the present-day stress profile in the Lower Paleozoic shale succession of the Baltic Basin (northern Poland), Based on data from a single borehole. Our analyses take into account the vertical transverse isotropy (VTI) of the mechanical properties. Initial modelling of the stress profile showed - despite general agreement concerning the length and location of the modelled and observed breakouts - systematic differences when the profile of these structures is analysed in detail. Analyses carried out for selected segments of the borehole have shown that the mere presence of breakouts affects the interpretation of the mechanical properties, and thus also the stress profile. We have analysed the size of the necessary correction for tectonic strain, to avoid this effect, as well as uncertainty resulting from the failure criteria adopted. The final model, corrected for stress disturbances by breakouts, reveals the strati fication of stress regime, with the dominance of a normal faulting regime, and low values of differential stresses in the shale formations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 51
Opis fizyczny
Bibliogr. 42 poz.,map., rys., tab., wykr.
Twórcy
autor
- Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
- Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
- 1. Barton, C.A., Zoback, M.D., Burns, K.L., 1988. In-situ stress orientation and magnitude at the Fenton geothermal site, New Mexico, determined from wellbore breakouts. Geophysical Research Letters, 15: 467-470.
- 2. Benz, T., Schwab, R., 2008. A quantitative comparison of six rock failure criteria. International Journal of Rock Mechanics and Mining Sciences, 45: 1176-1186.
- 3. Bobek, K., Jarosiński, M., 2018. Parallel structural interpretation of drill cores and microresistivity scanner images from gas-bearing shale (Baltic Basin, Poland). Interpretation, 6: 1-50.
- 4. Bogdanova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., Volozh, Y.A., 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160: 23-45.
- 5. Botor, D., Golonka, J., Anczkiewicz, A.A., Dunkl, I., Papiernik, B., Zając, J., Guzy, P., 2019. Burial and thermal history of the Lower Palaeozoic petroleum source rocks at the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae, 89: 121-152.
- 6. Colmenares, L.B., Zoback, M.D., 2002. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. International Journal of Rock Mechanics and Mining Sciences, 39: 695-729.
- 7. Dadlez, R., Feldman-Olszewska, A., Gaździcka, E., Iwanow, A., Kiersnowski, H., Leszczyński, K., Marek, S., Pokorski, J., Wagner, R., Wybraniec, S., 1998. Palaeogeographical Atlas of the Epicontinential Permian and Mesozoic in Poland, 1:2 500 000. Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej SA, Warszawa.
- 8. Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M., Risnes, R., 2008. Ppetroleum Related Rock Mechanics 2nd ed. Elsevier, Amsterdam.
- 9. Gregersen, S., Wiejacz, P., Dębski, W., Domanski, B., Assinovskaya, B., Guterch, B., Mäntyniemi, P., Nikulin, V.G., Pacesa, A., Puura, V., Aronov, A.G., Aronova, T.I., Grnthal, G., Husebye, E.S., Sliaupa, S., 2007. The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164: 63-74.
- 10. Grüthal, G., Stromeyer, D., Wylegalla, K., Kind, R., Wahlström, R., Yuan, X., Bock, G., 2008. The Mw 3.1-4.7 earthquakes in the southern Baltic Sea and adjacent areas in 2000, 2001 and 2004. Journal of Seismology, 12: 413-429.
- 11. Higgings, S., Goodwin, S., Donald, Q., Donald, A., Bratton, T., Tracy, G., 2008. Anisotropic stress models improve completion design in the Baxter shale. in: Proceedings of SPE ATCE, Denver, 21-24 September, SPE 115736.
- 12. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W., 2007. Fundamentals of Rock Mechanics, Fourth Edition. Blackwell Publishing, Oxford.
- 13. Jarosiński, M., 2005. Ongoing tectonic reactivation of the Quter Carpathians and its impact on the foreland: results of borehole breakout measurements in Poland. Tectonophysics, 410: 189-216.
- 14. Jarosiński, M., 2006. Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50 (3): 303-321.
- 15. Jarosiński, M., Beekman, F., Bada, G., Cloetingh, S., 2006. Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modelling. Geophysical Journal International, 167: 860-880.
- 16. Lekhnitskii, S.G., 1968. Anisotropic Plates. Gordon and Breach, New York.
- 17. Matyja, H., 2006. Stratigraphy and facies development of Devonian and Carboniferous deposits in the Pomeranian Basin and in the western part of the Baltic Basin and palaeogeography of the northern TESZ during Late Palaeozoic times (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 79-122.
- 18. Mavko, G., Mukerji, T., Dvorkin, J., 2009. Rock Physics Handbook: Tools for Seismic Analysis in Porous Media. Cambridge University Press.
- 19. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., Buffenmyer, V., 2016. Pomeranian Caledonides, NW Poland - a collisional suture or thin-skinned fold- and-thrust belt? Tectonophysics, 692: 29-43.
- 20. Modliński, Z., Podhalańska, T., 2010. Outline of the lithology and depositional features of the lower Palaeozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54 (1): 109-121.
- 21. Modliński, Z., Jaworowski, K., Miłaczewski, L., Pacześna, J., Podhalańska, T., Sikorska, M., Szymański, B., Waksmundzka, M.I., 2010. Paleogeological Atlas of the Sub-Permian Paleozoic of the East European Craton in Poland and Neighbouring Areas, 1:2 000 000. Polish Geological Institute - National Research Institute.
- 22. Muller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., Ljunggren, C., 1992. Regional patterns of tectonic stress in Europe. Journal of Geophysical Research, 97: 11783-11803.
- 23. Nowacki, w., 1970. Teoria sprężystości (in Polish). Państwowe Wydawnictwo Naukowe, Warszawa.
- 24. Peška, P., Zoback, M.D., 1995. Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. Journal of Geophysical Research, 100: 12791-12811.
- 25. Piłacik, A., Adamuszek, M., Dąbrowski, M., 2017. Breakout Analysis for Anisotropic Rocks (BAAR): MATLAB-Based Code to Study Failure Zone Development Around Boreholes in Anisotropic Shales. 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco.
- 26. Poprawa, P., 2020. Lower Paleozoic oil and gas shale in the Baltic-Podlasie-Lublin Basin (central and eastern Europe) - a review. Geological Quarterly, 64 (3): 515-566.
- 27. Poprawa, P., Šliaupa, S., Stephenson, R., Lazauskiené, J., 1999. Late Vendian - Early palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314: 219-239.
- 28. Savin, G.N., 1970. Stress Distribution Around Holes. NASA Technical Translation, NASA TT F-607.
- 29. Sone, H., Zoback, M.D., 2013. Mechanical properties od shale-gas reservoir rocks - part 1: static and dynamic elastic properties and anisotropy. Geophysics, 78: D381-D392.
- 30. Stadtmüller, M., Lis-Śledziona, A., Słota-Valim, M., 2017. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation, 6: 1-51.
- 31. Suarez-Rivera, R., Bratton, T., 2012. Estimating Horizontal Stress from Three-Dimensional Anisotropy. US patent No. 8,175,807 B2.
- 32. Thiercelin, M.J., Plumb, R.A., 1994. A core-based prediction of lithologic stress contrasts in East Texas Formations. SPE Formation Evaluation, 9: 251-258.
- 33. Tingay, M., Reinecker, J., Muller, B., 2008. Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map Project, Guideline: Image Logs.
- 34. Vernik, L., Milovac, J., 2011. Rock physics of organic shales. The Leading Edge, 30: 318-323.
- 35. Wang, Y., Dusseault, M.B., 1995. Response of a circular opening in a friable low-permeability medium to temperature and pore pressure changes. International Journal for Numerical and Analytical Methods in Geomechanics, 19: 157-179.
- 36. Wilczyński, P.M., Domonik, A., Łukaszewski, P., 2021. Anisotiopy of strength and elastic properties of Lower Paleozoic Shales from the Baltic Basin, Poland. Energies, 14: 2995.
- 37. Wojtowicz, M., Jarosiński, M., 2019. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and in complete core data integration. International Journal of Rock Mechanics and Mining Sciences, 115: 111-120.
- 38. Wojtowicz, M., Jarosiński, M., Pachytel, R., 2021. Unconfined compressive strength of the Lower Paleozoic shales from the Baltic Basin (northern Poland). Geological Quarterly, 65(2): 33.
- 39. Zhang, L., Cao, P., Radha, K.C., 2010. Evaluation of rock strength criteria for wellbore stability analysis. International Journal of Rock Mechanics and Mining Sciences, 47: 1304-1316.
- 40. Zoback, M.D., 2007. Reservoir Geomechanics. Cambridge University Press.
- 41. Zoback, M.D., Moos, D., Mastin, L., Anderson, R.N., 1985. Well bore breakouts and in situ stress. Journal of Geophysical Research, 90: 5523-5530.
- 42. Zoback, M.L., 1992. First- and second-order patterns of stress in lithosphere: the World Stress Map Project. Journal of Geophysical Research, 97: 11703-11728.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93abb643-c020-4cba-92aa-3483808656d0