PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modular J-PET scanner, comprising 24 compact and versatile modules, each consisting of 13 plastic strips with four SiPM detectors at the ends, represents a powerful tool for clinical applications in nuclear medical imaging. This study presents preliminary results from the exploration of simultaneous dual-isotope imaging using the modular J-PET system. Our approach involved two isotopes: 68Ge, characterized by a ringlike shape, and 22Na, exhibiting a point-like shape. The imaging was based on double-coincidence and triple-coincidence events. In the double coincidence case, both isotopes contributed comparably, whereas in the triple coincidence case 22Na dominated due to the prompt gamma being emitted with 100% of positron emissions, unlike 68Ga, where the prompt gamma was emitted in only 1.3% of cases after positron emission. In this work we present direct 2γ images determined for two-signal events and images for three-signal events, with two signals from annihilation photons and one from a prompt gamma. These results showcase the preliminary findings from simultaneous dual-isotope imaging of 68Ga and 22Na isotopes using the modular J-PET scanner, which will be presented and discussed.
Rocznik
Strony
101--108
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Doctoral School of Exact and Natural Science, Jagiellonian University, Krakow, Poland
  • Department of Experimental Particle Physics and Applications, Jagiellonian University in Krakow, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Institute of Nuclear Chemistry and Technology, Centre of Radiochemistry and Nuclear Chemistry, Warsaw, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Moskal P, Stępień E. Prospects and clinical perspectives of total body PET imaging using plastic scintillators. Pet Clin. 2020;15:439-52.
  • 2. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kubicz E, Moskal I, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res A. 2014;764:317-21.
  • 3. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66(17):175015.
  • 4. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technology for whole-body PET imaging. Acta Phys Pol B. 2017;48:1567.
  • 5. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of single-chip, real-time tomographic data processing on FPGA SoC devices. IEEE Trans Med Imaging. 2018;37(11):2526-35.
  • 6. Moskal P. Positronium Imaging. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference; 2019 Nov; Manchester, England. New York: IEEE; 2019. p. 1, https://ieeexplore.ieee.org/document/9059856.
  • 7. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021;7(42):eabh4394.
  • 8. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of positronium imaging with the J-PET tomograph. Phys Med Biol. 2019;64(5):055017.
  • 9. Moskal P, Kisielewska D, Shopa RY, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys. 2020;7:1-16.
  • 10. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys. 2019;1(9):527-9.
  • 11. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. Rev Mod Phys. 2023;95(2):021002.
  • 12. Moskal P, Stępień EŁ. Perspectives on translation of positronium imaging into clinics. Front Phys. 2022;10:969806.
  • 13. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun. 2021;12(1):5658.
  • 14. Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng. 2023;7(8):1028-39.
  • 15. Fukuchi T, Shigeta M, Haba H, Mori D, Yokokita T, Komori Y, et al. Image reconstruction method for dual-isotope positron emission tomography. J Instrum. 2021;16(01):P01035.
  • 16. Shimazoe K, Uenomachi M. Multi-molecule imaging and inter-molecular imaging in nuclear medicine. Bio-Algorithms Med Systems.2022;18(1):127-34.
  • 17. Uenomachi M, Shimazoe K, Takahashi H. A double photon coincidence detection method for medical gamma-ray imaging. Bio-Algorithms Med-Systems. 2022;18(1):120-6.
  • 18. Moskal P, Alfs D, Bednarski T, Białas P, Czerwiński E, Curceanu C, et al. Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom-a purely leptonic system. Acta Physica Polonica B. 2016;47(2): 509-35.
  • 19. Brzezinski KW, Baran J, Borys D, Gajewski J, Chug N, Coussat A, et al. Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study. Phys Med Biol. 2023;68:145016.
  • 20. Sharma S, Kacprzak K, Dulski K, Niedźwiecki S, Moskal P. Potential of modular J-PET for applications in the field of particle and medical physics. J Phys Conf Ser. 2022;2374(1):012040.
  • 21. Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+ + γ coincidence PET: an overview. Appl Radiat Isot. 2020;155:108898.
  • 22. Matulewicz T. Radioactive nuclei for β+ + γ PET and theranostics: selected candidates. Bio-Algorithms Med-Systems. 2021;17(4):235-9.
  • 23. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day-to-day practice of medicine. Bio-Algorithms Med Systems. 2021;17(4):203-12.
  • 24. Stefaan V, Pawel M, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7(1): 35.
  • 25. Verger A, Kas A, Darcourt J, Guedj E. PET imaging in neuro-oncology: an update and overview of a rapidly growing area. Cancers. 2022;14(5):1103.
  • 26. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.
  • 27. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:1-17.
  • 28. Rakoczy K. Adaptation of image reconstruction algorithms with time- -of-flight for the J-PET tomography scanner [master’s thesis]. 2019.
  • 29. Raczyński L, Wiślicki W, Krzemień W, Kowalski P, Alfs D, Bednarski T, et al. Calculation of the time resolution of the J-PET tomograph using kernel density estimation. Phys Med Biol. 2017;62(12):5076.
  • 30. Sharma S, Chhokar J, Curceanu C, Czerwiński E, Dadgar M, Dulski K, et al. Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys. 2020;7(1):1-15.
  • 31. Sharma S, Baran J, Brusa RS, Caravita R, Chug N, Coussat A, et al. J-PET detection modules based on plastic scintillators for performing studies with positron and positronium beams. J Instrum. 2023;18(02):C02027.
  • 32. Khalil MM. Positron Emission Tomography (PET): Physics and Instrumentation. In: Basic Sciences of Nuclear Medicine. Cham: Springer International Publishing; 2021, 289-318.
  • 33. Kowalski P, Wiślicki W, Raczyński L, Alfs D, Bednarski T, Białas P, et al. Scatter fraction of the J-PET tomography scanner. Acta Phys Pol B. 2016;47:549-60.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93a99f2b-892f-4ddf-8a05-1c91dbee8e0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.