PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation into harmonic compensation using UPQC

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie kompensacji harmonicznej przy użyciu UPQC
Języki publikacji
EN
Abstrakty
EN
Due to recent advances in power electronics, many non-linear loads absorb non-sinusoidal or deformed currents from the power supply (harmonics generation). The reduction of this harmful distortion produced by these non-linear loads is very important in an electrical system. In this paper we present a Unified Power Quality Conditioner (UPQC) for the compensation of these voltage and current harmonic disturbances. Generally, UPQC has been considered as a source of current and voltage connected to the load (harmonic source). The approach is based on the principle of injection of harmonic current and voltage in the system, the same amplitude and the same inverse phase as the load current and voltage harmonics. In this article, we will present the operating principle of the UPQC and its modelling. The simulations results in the Matlab-Simulink environment show the efficiency of this device studied.
PL
Ze względu na najnowsze postępy w energoelektronice wiele obciążeń nieliniowych pochłania z zasilacza prądy niesinusoidalne lub odkształcone (generowanie harmonicznych). Redukcja szkodliwych zniekształceń wytwarzanych przez obciążenia nieliniowe jest bardzo ważna w systemie elektrycznym. W tym artykule przedstawiamy ujednolicony kondycjoner jakości energii (UPQC) do kompensacji zakłóceń harmonicznych napięcia i prądu. Ogólnie rzecz biorąc, UPQC uznano za źródło prądu i napięcia podłączone do obciążenia (źródło harmonicznych). Podejście opiera się na zasadzie wstrzykiwania do układu harmonicznych prądu i napięcia, o tej samej amplitudzie i tej samej fazie odwrotnej, co harmoniczne prądu i napięcia obciążenia. W tym artykule przedstawimy zasadę działania UPQC i jej modelowanie. Wyniki symulacji w środowisku Matlab Simulink pokazują wydajność badanego urządzenia.
Rocznik
Strony
256--260
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University of Echahid Hamma Lakhdar of El Oued, Algeria. His fields of interest are Power Quality, Power System, FACTS, Power Electronic
  • University of Mohamed-Cherif Messaadia of Souk Ahras, Algeria; Electrotechns and Renwable energy Laboratory (LEER). His fields of interest are Power Quality, Power System, FACTS, Power Electronic
Bibliografia
  • [1] Gopal, B., Murthy, P. K., & Sreenivas, G. N. (2013). A review on UPQC for power quality improvement in distribution system. Global Journal of Researches in Engineering Electrical and Electronics Engineering, 13(7), 41-49.
  • [2] Rathika, P., & Devaraj, D. (2010, March). Artificial Intelligent Controller based Three-PhaseShunt Active Filter for Harmonic Reduction and Reactive Power Compensation. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS) (pp. 17-19).
  • [3] D C Bhonsle and N K Zaveri, Dr R B Kelkar « Design and Simulation of Single Phase Shunt Active Power Filter for Harmonic Mitigation in Distribution System » The International Conference on Electrical Engineering,OKINAWA, JAPAN 2008.
  • [4] Temerbaev, S. A., Dovgun, V. P., Bojarskaja, N. P., & Sinyagovski, A. F. (2013). Active power filter control using adaptive signal processing techniques. Energy and Power Engineering, 5(04), 1115-1119.
  • [5] Ba, A. O., & Barry, A. O. (2003, May). Active filter analysis by the harmonic impedance compensation method (part 1). In CCECE 2003-Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No. 03CH37436) (Vol. 1, pp. 663-667). IEEE.
  • [6] Menda, V. A., Sankaraprasad, B., & Kalyani, K. (2012). Neural network based shunt active filter for harmonic reduction: A technological review. International Journal of Engineering Research and Development, 2(11), 32-41.
  • [7] Vazquez, J. R., & Salmeron, P. (2003). Active power filter control using neural network technologies. IEE Proceedings Electric Power Applications, 150(2), 139-145.
  • [8] Senthilnathan, N., & Manigandan, T. (2012). Implementation of a Novel Control Strategy Using Fuzzy Logic Controller to Shunt Active Filter for Line Harmonic Reduction. Journal of Computer Science, 8(5), 737.
  • [9] Hailiang, Z., Shun, G., Yong, L., & Yong, R. (2013, December). A UPQC controller design based on SMVSC. In 2013 5th International Conference on Power Electronics Systems and Applications (PESA) (pp. 1-6). IEEE.
  • [10] Prasad, S. C., & Khatod, D. K. (2015). A review on selection and usage of modern active power filter. Int. J. Eng. Trends Technol, 20(2), 109-114.
  • [11] Gayatri, M. T. L., Parimi, A. M., & Kumar, A. P. (2016, January). Utilization of Unified Power Quality Conditioner for voltage sag/swell mitigation in microgrid. In 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE) (pp. 1-6). IEEE.
  • [12] Maity, A. K., Pratihar, R., Sadhu, S., & Dalai, S. (2016, January). Biogeography based PI controller for unified power quality conditioner. In 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI) (pp. 254 258). IEEE.
  • [13] Montero, M. I. M., Cadaval, E. R., & Gonzalez, F. B. (2007). Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE transactions on power electronics, 22(1), 229-236.
  • [14] J. Afonso; M. Aredes; E. Watanabe; J. Martins « Shunt Active Filter for Power Quality Improvement» International Conference UIE 2000 – “Electricity for a Sustainable Urban Development” Lisboa, Portugal, 1-4 Novembro 2000.
  • [15] Areerak, K. L., & Areerak, K. N. (2010). The comparison study of harmonic detection methods for shunt active power filters. International Journal of Energy and Power Engineering, 4(10), 1464-1469.
  • [16] Anand, V., & Srivastava, S. K. (2012). Simulation and performance investigation of series active power filter using hysteresis current control method. International Journal of Engineering Research and Applications (IJERA), 2(4), 1073 1080.
  • [17] Kumar, A., Bhat, A. H., & Singh, S. P. (2016, September). Performance evaluation of fuzzy logic controlled voltage source inverter based unified power quality conditioner for mitigation of voltage and current harmonics. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1799-1804). IEEE.
  • [18] Deshpande, M., & Date, T. (2015, March). Unified Power Quality Conditioner for three phase four wire distribution system. In 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1-4). IEEE.
  • [19] Asiminoaei, L., Blaabjerg, F., & Hansen, S. (2005, March). Evaluation of harmonic detection methods for active power filter applications. In Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005. (Vol. 1, pp. 635-641). IEEE.
  • [20] Kale, M., & Ozdemir, E. (2005). An adaptive hysteresis band current controller for shunt active power filter. Electric power systems research, 73(2), 113-119.
  • [21] Holtz, J. (1992). Pulsewidth modulation-a survey. IEEE transactions on Industrial Electronics, 39(5), 410-420.
  • [22] Holtz, J. (1994). Pulsewidth modulation for electronic power conversion. Proceedings of the IEEE, 82(8), 1194-1214.
  • [23] Komatsu, Y., & Kawabata, T. (1997, July). Characteristics of three phase active power filter using extension pq theory. In ISIE'97 Proceeding of the IEEE International Symposium on Industrial Electronics (Vol. 2, pp. 302-307). IEEE.
  • [24] Dobrucky, B., Kim, H., Racek, V., Roch, M., & Pokorny, M. (2002, April). Single-phase power active filter and compensator using instantaneous reactive power method. In Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579) (Vol. 1, pp. 167-171). IEEE.
  • [25] P. L. Leow and A. A. Naziha, « SVM Based Hysteresis Current Controller for a Three Phase Active Power Filter» Proceedings of the IEEE National Conference on Power and Energy Conference (PECon), Kuala Lumpur, Malaysia, 2004, pp. 132 136.
  • [26] Jou, H. L. (1995). Performance comparison of the three-phase active-power-filter algorithms. IEE Proceedings-generation, transmission and distribution, 142(6), 646-652.
  • [27] C. L. Chen, E. L. Chen and C. L. Huang, « An Active Filter for Unbalanced Three-Phase System using Synchronous Detection Method» Proceedings of the Power Electronics Specialist Conference (PESC), Taipei, Taiwan, 1994, pp. 1451 1455.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93a3a6a3-0f42-4194-9f0c-4124719b2793
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.