PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aircraft system identification using simultaneous quantized harmonic input signals

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, quanizted multisine inputs for a maneuver with simultaneous elevator, aileron and rudder deflections are presented. The inputs were designed for 9 quantization levels. A nonlinear aircraft model was exited with the designed inputs and its stability and control derivatives were identified. Time domain output error method with maximum likelihood principle and a linear aircraft model were used to perform parameter estimation. Visual match and relative standard deviations of the estimates were used to validate the results for each quantization level for clean signals and signals with measurement noise present in the data. The noise was included into both output and input signals. It was shown that it is possible to obtain accurate results when simultaneous flight controls deflections are quantized and noise is present in the data.
Rocznik
Strony
1351--1362
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Institute of Aeronautics and Applied Mechanics, ul. Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • [1] Certification Specifications for Aeroplane Flight Simulation Training Device, European Space Agency, Technical Report CS-FSTD(A), Paris, 2018.
  • [2] FAA Approval of Aviation Training Devices and Their Use for Training and Experience, Federal Aviation Administration, Technical Report 61-136B, Washington D.C., 2018.
  • [3] R.V. Jategaonkar, “Flight Vehicle System Identification: A Time Domain Methodology”, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2015, doi: 10.2514/4.102790.
  • [4] J.A. Grauer, “Real-Time Data-Compatibility Analysis Using Output Error Parameter Estimation”, J. Aircr. 52(3), 940–947 (2015), doi: 10.2514/1.C033182.
  • [5] C. Deiler, “Aerodynamic Modeling, System Identification, and Analysis of Iced Aircraft Configurations”, J. Aircr. 55(1), 145– 161 (2017), doi: 10.2514/1.C034390.
  • [6] E. Özger, “Parameter Estimation of Highly Unstable Aircraft Assuming Linear Errors”, AIAA Atmospheric Flight Mechanics Conference, Minneapolis, 2012, doi: 10.2514/6.2012‒4511.
  • [7] B. Mettler, T. Kanade, and M.B. Tischler, “System identification modeling of a model-scale helicopter”, Technical Report CMURI- TR-00‒03, Robotics Institute, Pittsburgh, 2000.
  • [8] L. Baranowski, B. Gadomski, P. Majewski, and J. Szymonik, “35 mm ammunition’s trajectory model identification based on firing tables”, Bull. Pol. Ac.: Tech. 66(5), 635–643 (2018), doi: 10.24425/bpas.2018.124279.
  • [9] P. Lichota, M. Jacewicz, and J. Szulczyk, “Spinning gasodynamic projectile system identification experiment design”, Aircr. Eng. Aerosp. Technol. 92(3), 452–459 (2020), doi: 10.1108/AEAT-06-2019-0124.
  • [10] M. Jirgl, L. Obsilova, J. Boril, and R. Jalovecky, “Parameter identification for pilot behaviour model using the MATLAB system identification toolbox”, 2017 International Conference on Military Technologies (ICMT), Brno, 2017, doi: 10.1109/MILTECHS. 2017.7988824.
  • [11] A. Kopyt and M. Żugaj, “Analysis of Pilot Interaction with the Control Adapting System for UAV”, J. Aerosp. Eng. 33(4), 1–7 (2020), doi: 10.1061/(ASCE)AS.1943-5525.0001109.
  • [12] P. Lichota, K. Sibilski, and P. Ohme, “D-Optimal Simultaneous Multistep Excitations for Aircraft Parameter Estimation”, J. Aircr. 54(2), 747–758 (2017), doi: 0.2514/1.C033794.
  • [13] M.S. Roeser and N. Fezans, “Method for Designing Multi-Input System Identification Signals Using a Compact Time-Frequency Representation”, CEAS Aeronaut. J., (in press).
  • [14] E.A. Morelli, “Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain”, 13th IFAC Conference on System Identification, IFAC Paper REG-360, Rotterdam, 2003.
  • [15] M.B. Tischler, C.M. Ivler, and T. Berger, “Comment on Method for Real-Time Frequency Response and Uncertainty Estimation”, J. Guid. Control Dyn. 38(3), 547–549 (2015), doi: 10.2514/1.G000780.
  • [16] B. Martos and A. Noriega, “A Method for Real-Time Pilot Modeling and Multisine Tracking Input Design”, AIAA Sci-tech 2019 Forum, AIAA 2019–1318, San Diego, 2019, doi: 10.2514/6.2019-1318.
  • [17] J.A. Grauer, E.A. Morelli, and D.G. Murri, “Flight-Test Techniques for Quantifying Pitch Rate and Angle-of-Attack Rate Dependencies”, J. Aircr. 54(6), (2017), doi: 10.2514/1.C034407.
  • [18] M.J. Schmitz and R.A. Green, “Multisine excitation design to increase the efficiency of system identification analysis through undersampling and DFT”, Measurement 45(6), 1576‒1586 (2013), doi: 10.1016/j.measurement.2012.02.019.
  • [19] E. Keikha, A. Al Mamun, T.H. Lee, and C.S. Bhatia, “Multi-frequency Technique for Frequency Response Measurement and its Application to Servo System with Friction”, IFAC Proc. Volumes 44(1), 5273–5278 (2011), doi: 10.3182/20110828-6-IT-1002.02670.
  • [20] E. Geerardyn, Y. Rolain, and J. Schoukens, “Design of Quasilogarithmic Multisine Excitations for Robust Broad Frequency Band Measurements”, IEEE Trans. Instrum. Meas. 62(5), 1364‒1372 (2013), doi: 10.1109/TIM.2012.2232474.
  • [21] P. Lichota, J. Szulczyk, D.A. Noreña, F.A. Vallejo Monsalve, “Power spectrum optimization in the design of multisine manoeuvre for identification purposes”, J. Theor. Appl. Mech. 54(4), 1193–1203 (2017), doi: 10.15632/jtam-pl.55.4.1193.
  • [22] M. Alabsi and T. Fields, “Quadrotor aircraft intelligent system identification experiment design”, Proc. Inst. Mech. Eng. Part G–J. Aerosp. Eng. 233(13), 4911–4925 (2019), doi: 10.1177/0954410019833209.
  • [23] M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation”, IEEE Trans. Inf. Theory 16(1), 85–89 (1970), doi: 10.1109/TIT.1970.1054411.
  • [24] J. Ojarand and M. Min, “Recent Advances in Crest Factor Minimization of Multisine” Elektronika i Elektrotechnika 23(2), 59–62 (2017), doi: 10.5755/j01.eie.23.2.18001.
  • [25] Y. Yang, F. Zhang, K. Tao, B. Sanchez, H. Wen, and Z. Teng, “An improved crest factor minimization algorithm to synthesize multisines with arbitrary spectrum”, Physiol. Meas. 36(5), 895–910 (2015), doi: 10.1088/0967‒3334/36/5/895.
  • [26] M.J. Schmitzand and R.A. Green, “Multisine Excitation Design Using Synchronous Square Wave Sources”, 2013 IEEE International Instrumentation and Measurement Technology Conference, Minneapolis, 2013, pp. 319–322, doi: 10.1109/I2MTC.2013.6555432.
  • [27] P. Young and R.J. Patton, “Comparison of Test Signals for Aircraft Frequency Domain Identification”, J. Guid. Control Dyn. 13(3), 430–438 (1990), doi: 10.2514/3.25355.
  • [28] P. Lichota, J. Szulczyk, M.B. Tischler, and T. Berger, “Frequency Responses Identification from Multi-Axis Maneuver with Simultaneous Multisine Inputs” J. Guid. Control Dyn. 42(11), 2550–2556 (2019), doi: 10.2514/1.G004346.
  • [29] O. Märtens and M. Min, “Multifrequency Bio-Impedance Measurement: Undersampling Approach”, Proceedings of the 6th Nordic Signal Processing Symposium NORSIG 2004, Espoo, Finland, 2004, pp. 145–148.
  • [30] C. Deiler and N. Fezans, “VIRTTAC—A Family of Virtual Test Aircraft for Use in Flight Mechanics and GNC Benchmarks”, AIAA Scitech 2019 Forum, AIAA 2019‒0950, San Diego, 2019, doi: 10.2514/6.2019‒0950.
  • [31] S. Topczewski, P. Bibik, and M. Zugaj, “Development of an automatic system for helicopter approach to a moving vessel”, 44th European Rotorcraft Forum 2018, Delft, 2018, pp. 1425‒1430.
  • [32] S. Topczewski, J. Narkiewicz, and P. Bibik, “Helicopter Control During Landing on a Moving Confined Platform”, IEEE Access 8, 107315‒107325 (2020), doi: 0.1109/ACCESS. 2020.3000294.
  • [33] L.T. Nguyen, M.E. Ogburn, W.P. Gilbert, K.S. Kibler, P.W. Brown, and P.L. Deal, “Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane with Relaxed Longitudinal Static Stability”, NASA, Technical Report TP-1538, Hampton, 1979.
  • [34] “U.S. Standard Atmosphere”, National Oceanic and Atmospheric Administration, Technical Report NOAA-S/T-76‒1562, Washington D.C, 1976.
  • [35] “Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems”, National Imagery and Mapping Agency, Washington D.C, Technical Report TR8350.2, 1984.
  • [36] M.B. Tischler and R.K. Remple, “Aircraft and Rotorcraft System Identification”, AIAA Education Series, AIAA, Reston, VA, 2012, doi: 10.2514/4.868207.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93a1b735-a693-4151-bd26-5ef9d949586c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.