PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rozwój wytrzymałości na ściskanie naparzanych zapraw cementowych z dużą ilością popiołów lotnych mielonych na mokro

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Compressive strength development of steam cured cement paste with high volume wet-grinded coal fly ash
Języki publikacji
PL EN
Abstrakty
PL
W badaniach przygotowano mieloną na mokro drobnoziarnistą zawiesinę popiołu lotnego. Wykonano spoiwa cementowo-popiołowe z 30%, 50% i 70% zawartością popiołu lotnego, o stosunku woda/spoiwo równym 0,5. Próbki najpierw naparzano w 60°C przez 20 godzin, następnie schładzano do temperatury pokojowej, w ciągu 4 godzin. W końcowym etapie próbki dojrzewały w warunkach normowych do 28 dnia hydratacji. Zbadano wytrzymałość na ściskanie po 1 i 28 dniach oraz proces hydratacji i strukturę porowatości, wykorzystując rentgenografię, analizę termiczną, skaningową mikroskopię elektronową, spektroskopię magnetycznego rezonansu jądrowego oraz porozymetrię rtęciową. Wyniki pokazały, że jednodniowa wytrzymałość na ściskanie próbek zawierających do 50% DZPL była większa w porównaniu do zaczynu wzorcowego, w którym spoiwem był tylko cement. Wynika to z dużej aktywności i powierzchni właściwej popiołu lotnego, co spowodowało zwartą mikrostrukturę po naparzaniu. Dalszy wzrost wytrzymałości próbek dojrzewających po naparzaniu przez 28 dni, był zaskakująco mały. Zwiększenie wytrzymałości wynosiło 18% w przypadku 30% dodatku popiołu, 10% dla 50% dodatku oraz 11% po zastąpieniu 70% cementu popiołem. Wzrost wytrzymałości zapraw z popiołem mielonym na mokro, po dłuższym okresie dojrzewania, był znacznie mniejszy niż w przypadku zastosowania popiołu lotnego, który nie został poddany żadnej obróbce. Jednym z powodów była bardziej zwarta mikrostruktura zaczynów z popiołem mielonym na mokro, co utrudniało proces hydratacji cementu. Kolejnym powodem była mniejsza zawartość wodorotlenku wapnia, który jest substratem w reakcji pucolanowej popiołu.
EN
In this study, super fine fly ash slurry [WGFA] was prepared by wet grinding from the coal fly ash. Cement-fly ash binder with 30%, 50%, and 70% dosage of fly ash was designed, with a water/binder ratio of 0.5. The samples were firstly cured for 20 hours under steam curing at 60°C and then cooled to room temperature within 4 hours, followed by further curing to 28 days of age under standard curing condition. The compressive strength at 1 day and 28 days were examined, and the results were discussed in terms of hydration process and pore structure, which were evaluated by XRD, TG, SEM, NMR, and MIP. The results showed that 1 day compressive strength of the system with up to 50% WGFA was higher than that of the cement system. The reason was due to the high reaction activity of WGFA under steam curing and the excellent filling effect of fine particles. However, further curing to 28 days, the strength increase was surprisingly unacceptable, with an increase by 18% at 30% dosage, by 10% at 50% dosage, and by 11% at 70% dosage. These increases were much less than that in raw fly ash system. One reason was due to the denser structure which hindered the transportation of ions and water molecules for further hydration; the other reason was because of very little calcium hydroxide in the system, to activate the pozzolanic reaction of fly ash.
Czasopismo
Rocznik
Strony
211--231
Opis fizyczny
Bibliogr. 72 poz., il., tab.
Twórcy
autor
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P. R. China
autor
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P. R. China
autor
  • School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, P. R. China
autor
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, He Nan, P. R. China
Bibliografia
  • [1] Z. Zhang, Q. Wang, H. Chen, Properties of high-volume limestone powder concrete under standard curing and steam-curing conditions, Powder Technol, 301: 16-25 (2016).
  • [2] L. Baoju, X. Youjun, Z. Shiqiong, L. Jian, Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash, Cement Concrete Res, 31(10): 1455-1458 (2001).
  • [3] A. F. Bingöl, İ. Tohumcu, Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume, Mater Design, 51: 12-18 (2013).
  • [4] J. Yu, C. Lu, C. K. Y. Leung, G. Li, Mechanical properties of green structural concrete with ultrahigh-volume fly ash, Constr Build Mater, 147: 510-518 (2017).
  • [5] A. Gholampour, T. Ozbakkaloglu, Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag, J Clean Prod, 162: 1407-1417 (2017).
  • [6] M. U. Hossain, Chi S. Poon, Ya H. Dong, D. Xuan, Evaluation of environmental impact distribution methods for supplementary cementitious materials, Renew Sust Energ Rev, 82: 597-608 (2018).
  • [7] X.-G. Li, Y. Lv, B.-G. Ma, Q.-B. Chen, X.-B. Yin, S.-W. Jian, Utilization of municipal solid waste incineration bottom ash in blended cement, J Clean Prod, 32: 96-100 (2012).
  • [8] H. Tan, K. Nie, X. He, X. Deng, X. Zhang, Y. Su, J. Yang, Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials, Constr Build Mater, 206: 248-260 (2019).
  • [9] M. Wu, Y. Zhang, Y. Ji, G. Liu, C. Liu, W. She, W. Sun, Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures, J Clean Prod, 196: 358-369 (2018).
  • [10] H. Li, H. Zhang, L. Li, Q. Ren, X. Yang, Z. Jiang, Z. Zhang, Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum, Fuel, 255: 115783 (2019).
  • [11] J. Yang, J. Huang, Y. Su, X. He, H. Tan, W. Yang, B. Strnadel, Eco-friendly treatment of low-calcium coal fly ash for high pozzolanic reactivity: A step towards waste utilization in sustainable building material, J Clean Prod, 238: (2019).
  • [12] Y. Gao, B. He, Y. Li, J. Tang, L. Qu, Effects of nano-particles on improvement in wear resistance and drying shrinkage of road fly ash concrete, Constr Build Mater, 151: 228-235 (2017).
  • [13] Y. Gao, H. Zhang, S. Tang, H. Liu, Study on early autogenous shrinkage and crack resistance of fly ash high-strength lightweight aggregate concrete, Mag Concrete Res, 65(15): 906-913 (2013).
  • [14] M. R. Ahmad, B. Chen, J. Yu, A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash, Composites Part B: Engineering, 168: 204-217 (2019).
  • [15] G. Sua-iam, N. Makul, Incorporation of high-volume fly ash waste and high-volume recycled alumina waste in the production of self-consolidating concrete, J Clean Prod, 159: 194-206 (2017).
  • [16] I. Wilińska, B. Pacewska, Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash, J Therm Anal Calorim, (72): 1-21 (2018).
  • [17] T. Liu, W. Song, D. Zou, L. Li, Dynamic mechanical analysis of cement mortar prepared with recycled cathode ray tube (CRT) glass as fine aggregate, J Clean Prod, 174: 1436-1443 (2018).
  • [18] P. Zhang, F. H. Wittmann, P. Lura, H. S. Müller, S. Han, T. Zhao, Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: A review, Cement Concrete Res, 108: 152-166 (2018).
  • [19] Z. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, Y. Q. Xi, A comprehensive review on the applications of coal fly ash, Earth-sci Rev, 141: 105-121 (2015).
  • [20] P. Zhang, F. H. Wittmann, M. Vogel, H. S. Müller, T. Zhao, Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete, Cement Concrete Res, 100: 60-67 (2017).
  • [21] T. Hemalatha, A. Ramaswamy, A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete, J Clean Prod, 147: 546-559 (2017).
  • [22] J. Sun, X. Shen, G. Tan, J. E. Tanner, Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash, J Therm Anal Calorim: (2018).
  • [23] J. Mei, H. Tan, H. Li, B. Ma, X. Liu, W. Jiang, T. Zhang, X. Li, Effect of sodium sulfate and nano-SiO2 on hydration and microstructure of cementitious materials containing high volume fly ash under steam curing, Constr Build Mater, 163: 812-825 (2018).
  • [24] A. Wang, C. Zhang, W. Sun, Fly ash effects: I. The morphological effect of fly ash, Cement Concrete Res, 33(12): 2023-2029 (2003).
  • [25] A. Wang, C. Zhang, W. Sun, Fly ash effects: II. The active effect of fly ash, Cement Concrete Res, 34(11): 2057-2060 (2004).
  • [26] A. Wang, C. Zhang, W. Sun, Fly ash effects: III. The microaggregate effect of fly ash, Cement Concrete Res, 34(11): 2061-2066 (2004).
  • [27] S. Donatello, A. Fernández-Jimenez, A. Palomo, Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator, J Am Ceram Soc, 96(3): 900–906 (2013).
  • [28] D. F. Velandia, C. J. Lynsdale, J. L. Provis, F. Ramirez, A. C. Gomez, Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes, Constr Build Mater, 128: 248-255 (2016).
  • [29] S. Yousefi Oderji, B. Chen, M. R. Ahmad, S. F. A. Shah, Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators, J Clean Prod, 225: 1-10 (2019).
  • [30] G. Y. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement Concrete Res, 34(6): 1043-1049 (2004).
  • [31] T. Shi, Z. Li, J. Guo, H. Gong, C. Gu, Research progress on CNTs/CNFs-modifi ed cement-based composites - A review, Constr Build Mater, 202: 290-307 (2019).
  • [32] M. Liu, H. Tan, X. He, Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system, Constr Build Mater, 194: 350-359 (2019).
  • [33] B. Ma, T. Zhang, H. Tan, X. Liu, J. Mei, H. Qi, W. Jiang, F. Zou, Effect of triisopropanolamine on compressive strength and hydration of cement-fly ash paste, Constr Build Mater, 179: 89-99 (2018).
  • [34] D. Heinz, M. Göbel, H. Hilbig, L. Urbonas, G. Bujauskaite, Effect of TEA on fly ash solubility and early age strength of mortar, Cement Concrete Res, 40(3): 392-397 (2010).
  • [35] X. Yang, J. Liu, H. Li, L. Xu, Q. Ren, L. Li, Effect of triethanolamine hydrochloride on the performance of cement paste, Constr Build Mater, 200: 218-225 (2019).
  • [36] B. Ma, X. Liu, H. Tan, T. Zhang, J. Mei, H. Qi, W. Jiang, F. Zou, Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material, Constr Build Mater, 175: 726-734 (2018).
  • [37] P. Hou, K. Wang, J. Qian, S. Kawashima, D. Kong, S. P. Shah, Effects of colloidal nanoSiO2 on fly ash hydration, Cem Concr Compos, 34(10):1095-1103 (2012).
  • [38] N. Cristelo, P. Tavares, E. Lucas, T. Miranda, D. Oliveira, Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions - Effect of mechanical activation, solution concentration and temperature, Composites Part B: Engineering, 103: 1-14 (2016).
  • [39] H. Li, D. Xu, S. Feng, B. Shang, Microstructure and performance of fly ash micro-beads in cementitious material system, Constr Build Mater, 52: 422-427 (2014).
  • [40] H. Li, J. Zhao, Y. Huang, Z. Jiang, X. Yang, Z. Yang, Q. Chen, Investigation on the potential of waste cooking oil as a grinding aid in Portland cement, J Environ Manage, 184(Pt 3): 545-551 (2016).
  • [41] H. Li, X. Yang, Z. Jiang, Z. Suo, G. Zhang, J. Wu, L. Yu, Effect of different grinding aids on property of granulated blast furnace slag powder, Mater Struct, 48(12): 3885-3893 (2015).
  • [42] H. Li, Z. Jiang, X. Yang, L. Yu, G. Zhang, J. Wu, X. Liu, Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement, J Clean Prod, 93: 56-64 (2015).
  • [43] S. Kumar, R. Kumar, Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceram Int, 37(2): 533-541 (2011).
  • [44] Y. Wang, X. He, Y. Su, H. Tan, J. Yang, M. Lan, M. Ma, B. Strnadel, Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment, Constr Build Mater, 167: 96-105 (2018).
  • [45] Y. Li, S. Dai, X. He, Y. Su, Influences of Ultrafine Slag Slurry Prepared by Wet Ball Milling on the Properties of Concrete, Adv Mater Sci Eng: (2018).
  • [46] X. He, Q. Ye, J. Yang, F. Dai, Y. Su, Y. Wang, B. Strnadel, Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material, J Wuhan Univ Technol, 33(3): 625-633 (2018).
  • [47] Y. Guo, M. Liu, X. He, H. Tan, B. Ma, F. Chen, Effect of wet- and dry-grind fly ash on the durability of concrete, Zkg Int, 70(4): 50-55 (2017).
  • [48] H. Tan, X. Zhang, X. He, Y. Guo, X. Deng, Y. Su, J. Yang, Y. Wang, Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste, J Clean Prod, 205: 536-551 (2018).
  • [49] N. Kotake, M. Kuboki, S. Kiya, Y. Kanda, Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill, Adv Powder Technol, 22(1): 86-92 (2011).
  • [50] H. Tan, X. Deng, X. He, J. Zhang, X. Zhang, Y. Su, J. Yang, Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate, Cem Concr Compos, 97: 387-398 (2019).
  • [51] C. R. Ward, D. French, Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry, Fuel, 85(16): 2268-2277 (2006).
  • [52] F. Zou, H. Tan, Y. Guo, B. Ma, X. He, Y. Zhou, Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain, J Ind Eng Chem, 55: 91-100 (2017).
  • [53] H. Tan, Y. Guo, B. Ma, X. Li, B. Gu, Adsorbing Behavior of Polycarboxylate Superplasticizer in the Presence of Ester Group in Side Chain, J Disper Sci Technol, 38(5): 743-749 (2017).
  • [54] B. Zhang, W. Liu, X. Liu, Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry, Appl Surf Sci, 253(3): 1349-1355 (2006).
  • [55] A. Neimark, A new approach to the determination of the surface fractal dimension of porous solids, Physica A: Statistical Mechanics and its Applications, 191(1): 258-262 (1992).
  • [56] Q. Zeng, K. Li, T. Fen-Chong, P. Dangla, Surface fractal analysis of pore structure of high-volume fly-ash cement pastes, Appl Surf Sci, 257(3): 762-768 (2010).
  • [57] J. Yang, Y. Su, X. He, H. Tan, Y. Jiang, L. Zeng, B. Strnadel, Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash, Fuel Processing Technology, 181: 75-90 (2018).
  • [58] J. Yang, J. Huang, X. He, Y. Su, H. Tan, W. Chen, X. Wang, B. Strnadel, Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS, Constr Build Mater, 225: 1170-1182 (2019).
  • [59] L. Zhang, B. Chen, Hydration and Properties of Slag Cement Activated by Alkali and Sulfate, J Mater Civil Eng, 29(9): (2017).
  • [60] L. Qin, X. Gao, Properties of coal gangue-Portland cement mixture with carbonation, Fuel, 245: 1-12 (2019).
  • [61] T. Chen, X. Gao, How carbonation curing influences ca leaching of Portland cement paste: Mechanism and mathematical modeling, J Am Ceram Soc, 0(0)).
  • [62] J. Yang, F. Wang, Z. Liu, Y. Liu, S. Hu, Early-state water migration characteristics of superabsorbent polymers in cement pastes, Cement Concrete Res, 118: 25-37 (2019).
  • [63] Y. Huang, C. Xu, H. Li, Z. Jiang, Z. Gong, X. Yang, Q. Chen, Utilization of the black tea powder as multifunctional admixture for the hemihydrate gypsum, J Clean Prod, 210: 231-237 (2019).
  • [64] L. Qin, X. Gao, T. Chen, Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials, J Clean Prod, 191: 220-232 (2018).
  • [65] Y. Wang, Y. Cao, P. Zhang, Y. Ma, T. Zhao, H. Wang, Z. Zhang, Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles, Constr Build Mater, 209: 566-576 (2019).
  • [66] Q. Wang, D. Wang, H. Chen, The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete, Cem Concr Compos, 83: 125-137 (2017).
  • [67] A. Gonzalez-Corominas, M. Etxeberria, C. S. Poon, Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates, Cem Concr Compos, 71: 77-84 (2016).
  • [68] J. Yang, F. Wang, X. He, Y. Su, Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste, Cem Concr Compos, 97: 54-67 (2019).
  • [69] T. Liu, S. Qin, D. Zou, W. Song, Experimental investigation on the durability performances of concrete using cathode ray tube glass as fine aggregate under chloride ion penetration or sulfate attack, Constr Build Mater, 163: 634-642 (2018).
  • [70] P.-K. Hou, S. Kawashima, K.-J. Wang, D. J. Corr, J.-S. Qian, S. P. Shah, Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar, Cem Concr Compos, 35(1): 12-22 (2013).
  • [71] M. Narmluk, T. Nawa, Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures, Cement Concrete Res, 41(6): 579-589 (2011).
  • [72] P. Shen, L. Lu, Y. He, M. Rao, Z. Fu, F. Wang, S. Hu, Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete, Constr Build Mater, 162: 512-522 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-939ff6ce-ea43-406d-a683-7902223fc739
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.