PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural factors in the primary creep stage of two-phase titanium alloy

Identyfikatory
Warianty tytułu
PL
Oddziaływanie mikrostruktury na proces pełzania nieustalonego dwufazowego stopu tytanu
Języki publikacji
EN
Abstrakty
EN
One of the major areas of titanium alloys application includes discs and blades of compressors in turbine engines. In titanium alloys, significant strain can accumulate as a function of time, at stresses well below the yield strength at the homologous temperature below 0.25, even at room temperature. Life prediction for elements made of titanium alloys which is based solely on steady state creep parameters is in some cases not adequate due to large primary creep strains. In the case of rotating components of aero-engines small dimensional tolerances can be threatened and transient creep strains must be taken into account in modelling of overall creep deformation. Creep and fatigue properties of two-phase titanium alloys show strong dependence on microstructure, especially morphology of the α and β phases which can be controlled to certain extent by proper selection of hot working and heat treatment conditions. In the paper the primary creep behaviour of Ti–6Al–2Mo–2Cr alloy (VT3–1) at elevated temperature was investigated. The microstructure of the alloy was varied by means of changing conditions of heat-treatment. Creep tests were carried out on the alloy with globular and lamellar microstructure at the temperature of 450°C. Primary stage of the creep process was described using various constitutive laws. Applicability of power-law and logarithmic equations for describing strain evolution was verified. The influence of the initial microstructure on the primary creep strain and strain rate at the onset of steady-state creep stage was analysed.
PL
W pracy podjęto próbę określenia oddziaływania morfologii mikrostruktury dwufazowego stopu tytanu Ti–6Al–2Mo–2Cr na jego właściwości w stadium pełzania nieustalonego w temperaturze 450°C. Istotnym celem badań był dobór równań konstytutywnych opisujących krzywe pełzania stopu, które mogą być zastosowane do ilościowej oceny wpływu morfologii mikrostruktury stopu na wielkości charakteryzujące proces pełzania. Zagadnienie to jest istotne w procesie projektowania elementów konstrukcyjnych, zwłaszcza w przypadku małych tolerancji wymiarów (np. łopatki wirnika sprężarki silnika turbinowego), ze względu na skłonność stopów tytanu do osiągania znacznych odkształceń trwałych, zależnych od czasu, nawet w zakresie temperatury homologicznej poniżej 0,25.
Rocznik
Strony
196--200
Opis fizyczny
Bibliogr. 16 poz., fig., tab.
Twórcy
autor
  • Department of Material Science, Rzeszów University of Technology, Rzeszów, Poland
autor
  • Department of Material Science, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Material Science, Rzeszów University of Technology, Rzeszów, Poland
Bibliografia
  • [1] Lütjering G., Williams J. C.: Titanium. Springer-Verlag, Berlin Heidelberg (2007).
  • [2] Sozańska M., Szkliniarz W., Kościelna A.: Changes in microstructure and properties of two-phase titanium alloys under the continuous heating and fast cooling conditions. Inżynieria Materiałowa Materials Engineering 28 (3-4) (2007) 212÷215.
  • [3] Banerjee D., Williams J. C.: Perspectives of titanium science and technology. Acta Mater. 61 (2013) 844÷879.
  • [4] Krasicka-Cydzik E., Kowalski K., Kaczmarek A.: Anodic and nanostructural layers on titanium and its alloys for medical applications. Inżynieria Materiałowa Materials Engineering 30 (5) (2009) 425÷428.
  • [5] Hewitt J. S., Davies P. D., Thomas M. J., Garratt P., Bache M. R.: Titanium alloy developments for aero-engine fan systems. Mater. Sci. Tech. 30 (2014) 1919÷1925.
  • [6] Bache M. R.: Processing titanium alloys for optimum fatigue performance. Int. J. Fatig. 21 (1999) S105÷S111.
  • [7] Motyka M., Ziaja W., Kubiak K., Sieniawski J.: Influence of thermomechanical processing conditions on microstructure and hot plasticity of Ti- 6Al-4V alloy. Inżynieria Materiałowa Materials Engineering 30 (5) (2009) 322÷325.
  • [8] Banerjee D., Pilchak A., Williams J. C.: Processing, structure, texture and microtexture in titanium alloys. Mater. Sci. Forum 710 (2012) 66÷84.
  • [9] Li X., Sugui T., Xianyu B., Liqing C.: Influence of heat treatment on microstructure and creep properties of hot continuous rolled Ti–6Al–4V alloy. Mater. Sci. Eng. A 559 (2013) 401÷406.
  • [10] Savage M. F., Neeraj T., Mills M. J.: Observations of room-temperature creep recovery in titanium alloys. Metall. Mater. Trans. 33A (2002) 891÷898.
  • [11] Peng J., Zhou C.-Y., Dai Q., He X.-H.: The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature. Mater. Sci. Eng. A 611 (2014) 123÷135.
  • [12] Lefranc P., Doquet V., Gerland M., Sarrazin-Baudoux C.: Nucleation of cracks from shear-induced cavities in an α/β titanium alloy in fatigue, room-temperature creep and dwell-fatigue. Acta Mater. 56 (2008) 4450÷4457.
  • [13] Bache M. R., Johnston R. E., Cook T. S., Robinson B. J., Matlik J. F.: Crack growth in the creep-fatigue regime under constrained loading of thin sheet combustor alloys. Int. J. Fatig. 42 (2012) 82÷87.
  • [14] Gollapudi S., Satyanarayana D. V. V., Phaniraj C., Nandy T. K.: Transient creep in titanium alloys: Effect of stress, temperature and trace element concentration. Mater. Sci. Eng. A 556 (2012) 510÷518.
  • [15] Balasundar I., Raghu T., Kashyap B. P.: Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α + β regime. Mater. Sci. Eng. A 609 (2014) 241÷249.
  • [16] Barboza M. J. R., Moura Neto C., Silva C. R. M.: Creep mechanisms and physical modelling for Ti–6Al–4V. Mater. Sci. Eng. A 369 (2004) 201÷209.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-939fe599-e04b-463d-824c-fa4042d800a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.