PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Air flow analysis for electrical motor's cooling system with Autodesk Simulation CFD 2013 program

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the analysis of airflow through electrical motor was conducted and optimal design solution was chosen in order to increase cooling efficiency. Numerical simulations allow to determine the areas of temperature occurrence which may have destructive in-fluence on electrical motor parts and on its safe operation. The numerical calculations of airflow was carried out for two different types of fans as well as for two different housings. An analysis of the construction was carried out by CFD method using Autodesk Simulation CFD 2013. Community results of the analysis, we can conclude that the better solution for machines with fixed direction of rotation is to use in-stead of the radial the axial fan. For axial fan the motor temperature in the same condition was lower by about 5°C.
Rocznik
Strony
89--92
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute Research & Development Centre of Electrical Machines "KOMEL", 188 Roździeńskiego Ave., 40-203 Katowice, Poland
Bibliografia
  • 1. Będkowski B., Madej J. (2012), The potential of 3D FEM and CFD methods for cooling systems analysis of electrical machines - the premises, Zeszyty Problemowe Maszyny Elektryczne, BOBRME Komel, No. 3, 139-143.
  • 2. Boglietti A., Cavagnino A., Staton D., Shanel M., Mueller M., Mejuto C. (2009), Evolution and Modern Approaches for Thermal Analysis of Electrical Machine, IEEE Trans. Ind. Electron., Vol. 56, 3, 871-882.
  • 3. Chang C.C., Kuo Y.F., Wang J.C., Chen S.L.(2010), Air cooling for a large-scale motor, Applied Thermal Engineering, Vol. 30, 11–12, 1360-1368.
  • 4. Dorrell D. G., Staton D. A., Hahout J., Hawkins D., McGilp M. I. (2006), Linked Electromagnetic and Thermal Modelling of a Permanent Magnet Motor, PEMD Servo Motor Thermal Analysis.
  • 5. Hongmin Li. (2009), Flow driven by a stamped metal cooling fan – Numerical model and validation, Experimental Thermal and Fluid Science, Vol. 33, 4, 683-694.
  • 6. Hongmin Li. (2010), Cooling of a permanent magnet electric motor with a centrifugal impeller, International Journal of Heat and Mass Transfer, Vol. 53, 4, 31, 797-810.
  • 7. Kelly W., Gigas B. (2003), Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime, Chemical Engineering Science, Vol. 58, 10, 2141-2152.
  • 8. Murthy B.N., Deshmukh N.A., Patwardhan A.W., Joshi J.B. (2007), Hollow self-inducing impellers: Flow visualization and CFD simulation, Chemical Engineering Science, Vol. 62, 14, 3839-3848.
  • 9. Lim C.H., Airoldi G., Bumby J.R., Dominy R.G., Ingram G.I., Mahkamov K., Brown N.L., Mebarki A., Shanel M. (2010), Experimental and CFD investigation of a lumped parameter thermal model of a single-sided, slotted axial flux generator, International Journal of Thermal Sciences, Vol. 49, 9, 1732-1741.
  • 10. Szczypior J., Jakubowski R. (2009), Calculation of heat storage in the coreless machine with permanent magnet with direct cooling, Zeszyty Problemowe Maszyny Elektryczne, BOBRME Komel, No. 83, 59-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-939f9806-d729-4cf7-ba58-2cdfb83e6aa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.