PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation and Characterization of CL-20 Based Composites by Compressed Air Spray Evaporation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrafine CL-20 particles and three CL-20-based composites were prepared by a compressed air spray evaporation method. All samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and mechanical sensitivity instruments. The results indicated that the thermal stabilities of the CL-20-based composites are better than that of ultrafine CL-20, and that the mechanical sensitivities of ultrafine CL-20 is lower than those of CL-20-based composites. The thermal stability and safety properties of CL-20/Estane 5703 are better than the other samples.
Rocznik
Strony
66--84
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • School of Environment and Safety Engineering, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Environment and Safety Engineering, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Environment and Safety Engineering, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Environment and Safety Engineering, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Environment and Safety Engineering, North University of China, 030051 Taiyuan, Shanxi, China
Bibliografia
  • [1] Sivabalan, R.; Gore, G.M.; Nair, U.R.; Saikia, A.; Venugopalan, S.; Gandhe, B.R. Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity. J. Hazard. Mater. 2007, 139(2): 199-203.
  • [2] Nair, U.R.; Sivabalan, R.; Gore, G.M.; Geetha, M.; Asthana, S.N.; Singh, H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based Formulations (Review). Combust. Explos. Shock Waves 2005, 41(2): 121-132.
  • [3] Geetha, M.; Nair, U.R.; Sarwade, D.B.; Gore, G.M.; Asthana, S.N.; Singh, H. Studies on CL-20: the Most Powerful High Energy Material. J. Therm. Anal. Calorim. 2003, 73(3): 913-922.
  • [4] Nielsen, A.T.; Christian, S.L.; Moore, D.W. Synthesis of 3,5,12-Triazawurtzitane (3,5,12-triazatetracyclo[5.3.1.12,604,9]dodecanes). J. Therm. Anal. Calorim. 1987, 52(9): 1656-1662.
  • [5] Urbelis, J.H.; Swift, J.A. Solvent Effects on the Growth Morphology and Phase Purity of CL-20. Cryst. Growth Des. 2014, 14(4): 1642-1649.
  • [6] Mandal, A.K.; Thanigaivelan, U.; Pandey, R.K.; Asthana, S.; Khomane, R.B.; Kulkarni, B.D. Preparation of Spherical Particles of 1,1-Diamino-2,2-dinitroethene (FOX-7) Using a Micellar Nanoreactor. Org. Process Res. Dev. 2012, 16(11): 1711-1716.
  • [7] Gupta, S.; Kumar, P.D.; Sharma, S.; Kaur, G.; Agarwal, A.; Lata, P. Pressurized Nozzle-based Solvent/Anti-solvent Process for Making Ultrafine ε-CL-20 Explosive. Propellants Explos. Pyrotech. 2017, 42(7): 773-783.
  • [8] Gao, H.; Liu, J.; Hao, G.Z.; Xiao, L.; Qiao, Y. Study on Preparation, Characterization and Comminution Mechanism of Nano-sized CL-20. Chin. J. Explos. Propellants 2015, 2(38): 46-49.
  • [9] Bayat, Y.; Zeynali, V. Preparation and Characterization of Nano-CL-20 Explosive. J. Energ. Mater. 2011, 29: 281-291.
  • [10] Bayat, Y.; Zarandi, M.; Zarei, M.A.; Soleyman, R.; Zeynali, V. A Novel Approach for Preparation of CL-20 Nanoparticles by Microemulsion Method. J. Mol. Liq. 2014, 193: 83-86.
  • [11] Krause, H.; Löbbecke, S.; Marioth, E.; Teipel, U.; Thome, V. Screening Units for Particle Formation of Explosives using Supercritical Fluids. Int. Annu. Conf. Fraunhofer ICT, 2000, 31: 119.
  • [12] Wang, Y.; Song, X.L.; Song, D.; Jiang, W.; Liu, H.Y.; Li, F.S. A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW. J. Energ. Mater. 2013, 31(1): 49-59.
  • [13] Pivkina, A.; Ulyanova, P.; Frolov, Y.; Zavyalov, S.; Schoonman, J. Nanomaterials for Heterogeneous Combustion. Propellants Explos. Pyrotech. 2004, 29(1): 39-48.
  • [14] Ye, B.Y.; An, C.W.; Wang, J.Y.; Geng, X.H. Formation and Properties of HMXbased Microspheres via Spray Drying. RSC Adv. 2017, 7(56): 35411-35416.
  • [15] Zhigach, A.N.; Leipunskii, I.O.; Berezkina, N.G; Pshechenkov, P.A.; Zotova, E.S.; Kudrov, B.V.; Gogulya, M.F.; Brazhnikov, M.A.; Kuskov, M.L. Aluminized Nitramine-based Nanocomposites: Manufacturing Technique and Structure Study. Combust. Explos. Shock Waves 2009, 45(6): 666-677.
  • [16] Qiu, H.; Stepanov, V.; Stasio, A.R.D.; Chou, T.; Lee, W.Y. RDX-based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity. J. Hazard. Mater. 2011, 185(1): 489-493.
  • [17] An, C.W.; Li, H.Q.; Geng, X.H.; Li, J.L.; Wang, J.Y. Preparation and Properties of 2,6-Diamino-3,5-dinitropyrazine-1-oxide based Nanocomposites. Propellants Explos. Pyrotech. 2013, 38(2): 172-175.
  • [18] Suh, W.H.; Suslick, K.S. Magnetic and Porous Nanospheres from Ultrasonic Spray Pyrolysis. J. Am. Chem. Soc. 2005, 127(34): 12007-12010.
  • [19] Bang, J.H.; Suslick, K.S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 2010, 22(10): 1039-1059.
  • [20] Kim, J.W.; Shin, M.S.; Kim, J.K.; Kim, H.S.; Koo, K.K. Evaporation Crystallization of RDX by Ultrasonic Spray. Ind. Eng. Chem. Res. 2011, 50(21): 12186-12193.
  • [21] Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumunzer, M.; Schaefer, M.R. Continuous Engineering of Nano-cocrystals for Medical and Energetic Applications. Sci. Rep. 2014, 4: 6575.
  • [22] Risse, B.; Spitzer, D.; Hassler, D.; Schnell, F.; Comet, M.; Pichot, V.; Muhr, H. Continuous Formation of Submicron Energetic Particles by the Flash-evaporation Technique. Chem. Eng. J. 2012, 203: 158-165.
  • [23] Explosive Test Method. Chinese National Military Standard GJB/772A-97, 1997.
  • [24] Smilowitz, L.; Henson, B.; Asay, B.; Dickson, P. A Model of the β-δ Phase Transition in PBX9501. Shock Compression Condens. Matter 2001, 1077-1080.
  • [25] Saw, C.K. Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature. Int. Det. Symp., Proc., 12th¸ San Diego, 2002.
  • [26] Gump, J.C.; Peiris, S.M. Phase Transitions and Isothermal Equations of State of epsilon Hexanitrohexaazaisowurtzitane (CL-20). J. Appl. Phys. 2008, 104(8): 1.
  • [27] Threlfall, T. Structural and Thermodynamic Explanations of Ostwald’s Rule. Org. Process Res. Dev. 2003, 7(6): 1017-1027.
  • [28] Mangin, D.; Puel, F.; Veesler, S. Polymorphism in Processes of Crystallization in Solution: A Practical Review. Org. Process Res. Dev. 2009, 13(1): 1-32.
  • [29] Croker, D.; Hodnett, B.K. Mechanistic Features of Polymorphic Transformations: The Role of Surfaces. Cryst. Growth Des. 2010, 10(6): 2806-2816.
  • [30] Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
  • [31] Rogers, R.N.; Dauh, G.W. Scanning Calorimetric Determination of Vapor-phase Kinetics Data. Anal. Chem. 2002, 45(3): 596-600.
  • [32] Burnham, A.K.; Weese, R.K.; Wemhoff, A.P.; Maienschein, J.L. A Historical and Current Perspective on Predicting Thermal Cookoff Behavior. J. Therm. Anal. Calorim. 2007, 89(2): 407-415.
  • [33] Zhang, T.L.; Hu, R.Z.; Xie, Y.; Li, F.P. The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials using Non-isothermal DSC. Thermochim. Acta. 1994, 244: 171-176.
  • [34] Sovizi, M.R.; Hajimirsadeghi, S.S.; Naderizadeh, B. Effect of Particle Size on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 168(2-3): 1134-1139.
  • [35] Wang, Y.; Song, X.L.; Song, D.; Li, L.; An, C.W.; Wang, J.Y. Synthesis, Thermolysis, and Sensitivities of HMX/NC Energetic Nanocomposites. J. Hazard. Mater. 2016, 312: 73-83.
  • [36] Wang, S.; An, C.W.; Wang, J.Y.; Ye, B.Y. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials. Nanoscale Res. Lett. 2018, 13(1): 85.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-939f6102-e6eb-423a-a905-4df997031bb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.