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Abstract. This article is devoted to the algorithm of 

training with reinforcement (reinforcement learning). This 

article will cover various modifications of the Q-Learning 

algorithm, along with its techniques, which can accelerate 

learning using neural networks. We also talk about 

different ways of approximating the tables of this 

algorithm, consider its implementation in the code and 

analyze its behavior in different environments. We set the 

optimal parameters for its implementation, and we will 

evaluate its performance in two parameters: the number of 

necessary neural network weight corrections and quality 

of training. 

Keywords: Training with reinforcement, Q-Learning, 

Neural networks, Markov environment. 

INTRODUCTION 

Watkinson proposed the Q-Learning algorithm in 

1989. This algorithm relates to a group of training 

algorithms with reinforcements. Learning with 

reinforcements represents a class of tasks in which the 

agent, acting in a particular environment, must find the 

optimal strategy for interaction with it. One of the popular 

methods for solving such problems is the Q-Learning 

algorithm. The agent's training information is presented in 

the form of a "reward", which has a certain number of 

values for each agent transition from one state to another. 

No other additional information for training the agent is 

provided. An important property of the Q-Learning 

algorithm is the ability to use it even in cases where the 

agent has no prior knowledge of the environment in 

which it will be located. 

When working with the Q-Learning algorithm, 

creation of a table for the function of the estimation of 

state-activity pairs is created. One of the conditions for 

the convergence of the algorithm in the case of using the 

tabular representation of the Q-values function is a 

multiple test of all possible state-activity pairs. Practical 

tasks usually have a large number state-activity pairs, 

which makes it impossible for tabular Q-Learning to solve 

problems of this type. In order to solve this problem it is 

necessary to use the approximation of the table of Q-

values. One means of effectively approximating the table 

of Q-values is the use of multilayer perceptron. It is this 

method that is devoted to this work. 

Purpose of paper: exploring opportunities and 

perspectives of using the algorithm of training with 

reinforcement with the help of neural networks. 

 

Q-LEARNING ALGORITHM AND ITS 

MODIFICATIONS 

The problem of reinforcement learning in general 

formed as follows. For each transition from one state to 

another appointed some scalar value "reward." The 

system receives a "reward" when making transition. The 

purpose of the system is a management policy that 

maximizes the expected amount of compensation known 

as a return. The function of the value is the prediction 

value of all states 

        V (xt)  

where rt – the award received during transition from 

the system in state xt to xt +1  and γ - discount factor (0 ≤ γ 

≤1). Thus, V (xt) represents the discount amount of 

rewards system can get at time t. This amount depends on 

the selected sequence of actions defined by policy 

management. The system needs to find a management 

policy that maximizes V (xt) for each state. 

Q-Learning Algorithm is not working with the 

function of value and uses instead of it Q-function 

argument which is not only the state but also action. It is 

possible to present Q-function and thereby find the 

optimal management policy (policy). This statement looks 

like: [6-7] 

 
where at –action selected at time t from the set of all 

possible actions A. Since the aim of the system is the total 

reward maximization, we create replacement max 

Q( , a)  and then we get  the following: 

 

 
Values are stored in a 2-dimensional table, the entry 

submitted by states and actions. The tabular 

representation of Q-function and Markov environment 

creates an element of convergence of the algorithm Q-

Learning. 

Systems that use this algorithm, usually combined 

with a time difference (TD (λ)), which was suggested by 

Sutton. If the time difference method (λ) is equal to 0, it 

means that the upgrade involves only the current and the 

following values forecast Q-values. Therefore, in this 

case, a method is called one-step Q-Learning. Expression 

of this algorithm is as follows: 
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-  

Analyzing expression of the Q-update function can 

conclude that the maximum use of this function is not 

good usually. In the early stages of learning algorithm Q-

value table contains estimates that are not ideal, and even 

in the later stages usage of maximum could lead to a 

revaluation of Q-values. Moreover rule of updating 

algorithm Q-Learning in combination with the time 

difference needs  zero value for λ in choosing actions 

based on "not greedy" policy (policy action in which 

selected from some probability that depends on the value 

Q-functions for the state, as opposed to "greedy" when the 

selected action with the largest Q-value). These 

deficiencies have caused modification algorithm Q-

Learning, which is one of the sources called SARSA 

(State-Action-Reward-State-Action), the other - modified 

Q-Learning. The main difference between these 

algorithms is that updates the rules Q-max values deleted 

operator. As a result, it is guaranteed that the error of the 

time difference will be calculated correctly whether the 

action will be selected according to the "greedy policies" 

or not, without having to reset the time difference. If the 

action will be selected in accordance with the "greedy 

politics", then this rule will fully comply update updates 

the formula above. 

Peng and Williams in their work in one-step 

algorithm Q-Learning introduced another method of 

combining Q-Learning and the time difference, called Q 

(λ). This method is based on  performance of the 

conventional one-step update policies to improve the 

prognosis of this Q and subsequent use of the time 

difference between arranged next to each other "greedy" 

predictions. Thus, this method does not depend on which 

policy has been selected. [4] 

 

METHODS APPROXIMATION Q - VALUES. 

One of the easiest ways of dealing with a large 

volume dimension which will run the agent is sampling, 

i.e. partitioning state space for small area each table entry 

field is Q - values. Using this approach received a gross 

generalization states. The success of this event depends 

on how efficient this you have to partition function Q - 

values. On the one hand for high accuracy it is required to 

do more partitions on a small area and, consequently, use 

the table Q - values greater volume, resulting in a need for 

a larger number of updates during training. On the other 

hand, splitting a volume area can lead to the inability to 

achieve optimal management policy.  

Thus, this method is the problem-oriented and 

requires a lot of effort for selection of optimal 

partitioning. 

There are methods that can accelerate the learning 

process by using tables Q - values large. One such method 

is the method of Hamming distance. Using this method all 

classes are given in the binary form and given threshold 

similarity (the number of bits in which each state can be 

different from the other). When the correction Q - 

valuesat the same time is updated for the selected state 

and for all the states to which the Hamming distance is 

selected less than a given threshold. Thus, the accelerated 

spread of Q - values in the table. 

Method CMAC (Cerebellar Model Articulator 

Controller), proposed by the Albus (Albus) is a 

compromise between using ordinary table Q-values and 

approximation of continuous functions. This method is 

known in the literature as a "tile" coding (tiles coding). 

Approximation CMAC structure consists of several 

layers. Each layer is divided into intervals of equal length 

("tiles") using the quantization. As each layer has a 

quantum function, the "tiles" layers are shifted relative to 

each other. Thus, system status, filed at the entrance 

CMAC, is associated with a set that overlap shifted tiles. 

The weighted sum of the indices of tiles and gives the 

output value. Method SMAS had success in solving 

difficult problems with continual space values, including 

the task of robot control. But nevertheless, despite the 

successful use, this algorithm requires quite difficult 

settings. The accuracy of functions that approximates is 

limited expansion of quantization. High precision requires 

a larger number of quantization scales and a long-term 

study environment. [7-8] 

RBF networks (Radial Bases Functions) closely 

related to the CMAC and conventional tables. When 

using this method of approximation table instead of the 

table of Q - values stored Gaussian table of functions or 

quadratic function. Rolling systems passed through all the 

functions of the function then summed and as a result, we 

obtain approximate values. [3] 

Consequently, all of the above methods have a 

common drawback - poor scalability when working with 

multidimensional space. If the present system with i-

inputs that need for quality approximation N basic 

functions, that means that we the need  basic 

functions. Thus, the number of basic functions grows 

exponentially regardless of the dimension of the input 

vector. 

Later in this article, a paragraph about the robot 

control we will consider this method as static 

approximation cluster analysis. When using this method, 

each step is connected with multiple clusters that provide 

assessments of defined class situations. During the 

upgrade evaluation of Q - values for the current state 

arises update all states that belong to this cluster. The 

authors of this method set limitation for this method: the 

difficulty settings to create semantic clusters and value 

that the cluster once formed cannot be broken in the 

future. 

It is known that multilayer perceptron is a good 

approximation function and, of course, there is a 

theoretical explanation. There is Kolmogorov theorem of 

mapping neural networks (Kolmogorov Mapping Neural 

Network Existence Theorem), which states that the 

directly distributed neural network with three layers 

(input layer, hidden layer, and output layer) can 

accurately represent any continuous function. The work of 

Lin is one of the first works in which in order for table to 

approximate and table with Q - values is used multilayer 

perceptron. Using a neural network to approximate Q - 

function has the following advantages: 

 Effective scaling for space has more dimensions; 
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 Generalization for large and continuous state 

space; 

 The possibility of implementation of parallel 

hardware. 

 

FEATURES OF NEURAL NETWORKS IN 

PROBLEMS OF REINFORCEMENT LEARNING 

When working with neural networks we distinguish 

two areas of training: learning with a teacher (supervisor 

learning) and learning without a teacher (unsupervised 

learning). The algorithms of reinforcement learning don`t 

belong to the above areas and the use of multilayer 

perceptron for approximation of functions in problems of 

reinforcement learning differs from conventional 

supervised learning. Comparing normal usage of 

perceptron for approximation problems and its use as part 

of the reinforcement algorithm can distinguish two main 

points: 

 In approximation problems normal training is 

provided in some training set whose elements are 

constantly repeated. When learning reinforcement 

there is no preset training set. Input samples are 

formed by the interaction of agent with the 

environment, and thus in learning some designs are 

more common than others. But when dealing with 

the continuous environment – there is high 

probability that the input pattern will be met only 

once. 

 In approximation problems normal training is 

conducted on known results, known true values of 

approximating function in certain points, which is 

not a reinforcement learning, and learning takes 

place on estimates Q-values which gradually change 

in the learning process.  

 

CONNECTABLE Q-LEARNING 

When using connect – approach in the Q-Learning 

algorithm tabular representation of Q-functions become 

replaced by neural network. The input of the network is 

fed by conditions, and initial data is estimated by Q-

values. Thus, no major changes in the classic Q-Learning 

are not included, except mechanism of changes in 

estimates storage of Q-values. This article uses a method 

of neural network offered by Lin which consists of 

applying a separate neural network for each action. [9] 

Q value of an action 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Q-approximation function using a plurality of 

neural networks 

 

At each iteration of the algorithm, current state is fed 

to the inputs of each neural network, but updating the 

weights is performed only for one neural network, whose 

actions were selected. When using a one-step Q-Learning, 

error correcting network weights is  

 
It is worth noting that Lin in his work used a special 

method of correction weights of the neural network, 

named backward replay. When using this method, the 

weights of the neural network are updated only when you 

reach absorbing system state (final state, for example, 

when reached any purpose). Using this technique provides 

storing all pairs of state - action that meets the system 

before reaching the absorbing state. Algorithm updates 

using the classic method of Q- values from reverse 

repetition: 

To reverse repetition: 

  
Perform 

1. t ← n 

2.  

3.  

4. 
 

Then, you configure the network that implements the 

algorithm using reverse distribution, where the error is 

approximately equal    

If t = 0 output, otherwise t ← t- 1; transition to step 2. 

The idea of the methodology used Lin, lies in the fact 

that a correct assessment Q- values is known only at 

achieving system absorbing state. In this case, the Q-

rating values equal prize. When removing from absorbing 

state evaluation Q-value is reduced by using discount 

factor. Scrolling the list of state - in reverse allows you to 

perform studies with a more precise estimate. However, 

the sequence of steps performed by the system may be 

sub-optimal and therefore assess which training will be 

carried out, as will be optimum. To address this 

shortcoming in their methods Lin used a weighted sum 

consisting of two components: 

1) Current grades of Q-function 

2) Grade obtained using the recursive expression in 

step 4 of the algorithm. 

Parameter λ, used in step 4 determines which of these 

two components need to be provided with more benefits. 

When using modified Q- Learning expression in step 

3 to be replaced Q ( λ) 

Algorithm requires making more serious changes that can 

be implemented as follows: 

1) Add steps 2a and 4a, which are as follows 

2a:    

4a:    

2) Error in step 5 will be as follows: 

 
The obvious drawback of reverse repetition technique 

is the need to store information about all the passages that 
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have been implemented the system before reaching the 

absorbing state. 

Also in the work of Sutton is described the use of 

algorithm TD by neural networks. This algorithm allows 

obtaining good results without storing lists of long pairs 

of condition - action. The basis of this algorithm is 

vectoring "traces of conformity" which provided the 

weights of the neural network. Using "tracks matching" 

allows updating the weights take into account the error in 

the previous steps, as they remain the weighted sum of the 

ingredients weekend. Version of this algorithm adapted 

and modified for Q-Learning and Q (λ) below: [1-2] 

modified Connectable Q-Learning 

Set "tracks matching" zero, e0 = 0 

t = 0 

Choose action, at 

If t > 0, we correct weights: 

wt= wt -1 + ⋅ (rt-1 +  ⋅ Qt - Qt -1 )⋅ et -1 

Calculate initial gradient ∇wQt  only for that network 

whose actions were selected.  

et= ∇wQt+  ⋅  ⋅ et -1 

Take action and get at “award” rt 

If the absorbing state is reached, then we end; 

otherwise 

t ← t + 1 and transition to step 3. 

 

Connectable Q-Learning for Q (λ)  

 Set "tracks matching" zero, e0 = 0 

t = 0 

Choose action, at 

If t> 0, then be corrected weights: 

 
et= ∇wQt+ γ ⋅ λ ⋅ et -1 

Calculate the input ingredients ∇wQt only for one 

network, the effect of which has been selected. 

Take action at and "to receive the award» rt 

If the absorbing state is reached -  we end, and if not,      

  t ← t + 1 and transition to the 3rd step. 

When using MCQ-L should be stored neural 

networks weight "footprints matching" last mentioned Q-

function Q and reward r. For Q (λ) storage costs more, as 

addition is necessary to keep the output gradients between 

steps neural network algorithm. Despite this it costs 

significantly less than those costs which are necessary for 

keeping the list of state-action methods using reverse 

repetition. 

 

OVERVIEW OF TASKS FOR ROBOT CONTROL 

The problem of robot control in 2-dimensional space 

has been solving at different times by different methods. 

Most work in this area dedicated to planning routes, 

which analyzed the environment with the aim of finding 

the most convenient way. One of the first works in this 

field is the work of Wilson.  

This work led to the birth of a whole class of 

problems dealing animates (ANIMAT = ANIMAL + 

ROBOT), that works enrolled using an algorithm of 

reinforcement. Classic animat of Wilson works in the 

discrete world and continually trains in the same 

environment. Animata’s purpose – is to learn how to 

achieve the goals of any training position for a minimum 

number of steps. 

All these works are characterized by the fact that 

tuition is always done in the same environment, so the 

warranty is only that the robot can only operate 

effectively in this environment and it is unknown how 

effective will be his behavior with the little change of the 

environment. In our work, the experiments with the robot, 

which learns many pretty typical examples, robot can 

function effectively, got a completely unfamiliar 

environment. 

 

TASK MANAGEMENT ROBOT 

Efficiency of described algorithms in this work 

analyzed using developed software simulator, operating in 

the 2-dimensional continuous medium. There was a task 

for a robot - to reach the goal, not facing any obstacles. 

Approximate scheme of sensors and work: 

 

 

 

 

 

 

 

                                                                        

 

Fig.2. Recognition Scheme interference. 

 

The learning process has been divided into trials. At 

each stage of education robot and goal were moved to a 

new access point, which took place after the generation of 

the new location of obstacles. Robot received award only 

in the end of the stages, in all other cases, the reward was 

zero. The stage ended in achieving the goals robot and 

receiving awards in the form of units. In this article, we 

reviewed the case where the robot could not reach the 

goal because of the location of obstacles. This case will 

be described and listed below. 

We generated 26 randomly placed on the map, and 

there is a way in which the robot reaches the target (as 

shown below).  

Processes of exploration and exploitation are 

important in the algorithms of reinforcement learning. 

The first step is to explore how you can set the 

environment by choosing less priority action. The final 

step is to go directly to the operation embodied in this 

article using the Boltzmann distribution: 

 
where T - the temperature that regulates the degree of 

randomness of selection with the largest Q- value. 

Results: In an experiment with systems, the main 

component, neural network consists of, the problem is 

related to the fact that reducing the error rate networks 

strongly depends on init weights. Therefore, before 

conducting our experiments, we have carefully studied all 

the possible distribution of weights for better performance 

of our neural network. 

Obstacle 

Goal 

Obstacle 
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Fig. 3. Generated Map interference. 

 

Besides using Q-Learning algorithm we should pay 

attention to changes in temperature interval T and the 

speed of change, because algorithm depends on these 

parameters convergence. Because these parameters and 

the "cornerstones" were considered: 

 
Fig. 4. Successful implementation of the algorithm. 

 

As we see in the picture above, the algorithm 

remembers the way from any cell on the map to the target 

and then just executes it. However, we should also 

consider the case when the target will be "locked" by 

obstacles, such as the unpredictable situation behave 

neural network of reinforcement. 

 
Fig. 5. The case when the target is protected 

In this case, the neural network and the algorithm 

simply loop. The algorithm tries to sort through all the 

possible admission to the goal, but each time facing one 

and the same obstacles. Since our robot stops only when 

the target is reached, program simply loops. 

 
Fig. 6. Charts comparing two methods: interactive 

update and feedback repetition 

 

CONCLUSION 

We presented a description of the algorithm Q-

Learning and its various options (such as modification Q-

Learning IQ (λ). Each of the above-mentioned algorithms 

was presented separately from two sides (direct correction 

weights and reverse playback). Experiments and practical 

application can be seen in the work and in our created 

environment. The researchers created the optimal 

conditions of algorithm parameters and compared their 

effectiveness. 

 So, after all that is said and analyzed above, we can 

conclude that the best and most effective algorithm was 

modified Q-Learning method with an immediate change 

of scale. This algorithm makes gains in many criteria such 

as quality, speed and memory cost. It is also worth noting 

that the use of the algorithm Q (λ) of reverse repetition. 

This combination shows the fastest convergence 
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algorithm Q (λ) of reverse repetition of the initial stages 

of training and high enough value of the average reward 

at the end of training. If we take into account only those 

parameters Q (λ), it is much better than other algorithms 

using reverse repetition.  

 In summary, I would like to point out that the use of 

immediate correction of weights provides a better solution 

and requires fewer resources. The advantage of immediate 

correction weights also lies in the fact that it can be used 

to solve problems that are not absorbing state. 
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