
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 08, No. 2, 9-14

Building computer vision systems using machine learning algorithms

N. Boyko , B. Dokhniak, V. Korkishko

Lviv Polytechnic National University, Lviv, Uktaine; e-mail: nataliya.i.boyko@lpnu.ua

Received February 19.2018: accepted May 20.2018

Abstract. This article is devoted to the algorithm of

training with reinforcement (reinforcement learning). This

article will cover various modifications of the Q-Learning

algorithm, along with its techniques, which can accelerate

learning using neural networks. We also talk about

different ways of approximating the tables of this

algorithm, consider its implementation in the code and

analyze its behavior in different environments. We set the

optimal parameters for its implementation, and we will

evaluate its performance in two parameters: the number of

necessary neural network weight corrections and quality

of training.

Keywords: Training with reinforcement, Q-Learning,

Neural networks, Markov environment.

INTRODUCTION

Watkinson proposed the Q-Learning algorithm in

1989. This algorithm relates to a group of training

algorithms with reinforcements. Learning with

reinforcements represents a class of tasks in which the

agent, acting in a particular environment, must find the

optimal strategy for interaction with it. One of the popular

methods for solving such problems is the Q-Learning

algorithm. The agent's training information is presented in

the form of a "reward", which has a certain number of

values for each agent transition from one state to another.

No other additional information for training the agent is

provided. An important property of the Q-Learning

algorithm is the ability to use it even in cases where the

agent has no prior knowledge of the environment in

which it will be located.

When working with the Q-Learning algorithm,

creation of a table for the function of the estimation of

state-activity pairs is created. One of the conditions for

the convergence of the algorithm in the case of using the

tabular representation of the Q-values function is a

multiple test of all possible state-activity pairs. Practical

tasks usually have a large number state-activity pairs,

which makes it impossible for tabular Q-Learning to solve

problems of this type. In order to solve this problem it is

necessary to use the approximation of the table of Q-

values. One means of effectively approximating the table

of Q-values is the use of multilayer perceptron. It is this

method that is devoted to this work.

Purpose of paper: exploring opportunities and

perspectives of using the algorithm of training with

reinforcement with the help of neural networks.

Q-LEARNING ALGORITHM AND ITS

MODIFICATIONS

The problem of reinforcement learning in general

formed as follows. For each transition from one state to

another appointed some scalar value "reward." The

system receives a "reward" when making transition. The

purpose of the system is a management policy that

maximizes the expected amount of compensation known

as a return. The function of the value is the prediction

value of all states

 V (xt)

where rt – the award received during transition from

the system in state xt to xt +1 and γ - discount factor (0 ≤ γ

≤1). Thus, V (xt) represents the discount amount of

rewards system can get at time t. This amount depends on

the selected sequence of actions defined by policy

management. The system needs to find a management

policy that maximizes V (xt) for each state.

Q-Learning Algorithm is not working with the

function of value and uses instead of it Q-function

argument which is not only the state but also action. It is

possible to present Q-function and thereby find the

optimal management policy (policy). This statement looks

like: [6-7]

where at –action selected at time t from the set of all

possible actions A. Since the aim of the system is the total

reward maximization, we create replacement max

Q(, a) and then we get the following:

Values are stored in a 2-dimensional table, the entry

submitted by states and actions. The tabular

representation of Q-function and Markov environment

creates an element of convergence of the algorithm Q-

Learning.

Systems that use this algorithm, usually combined

with a time difference (TD (λ)), which was suggested by

Sutton. If the time difference method (λ) is equal to 0, it

means that the upgrade involves only the current and the

following values forecast Q-values. Therefore, in this

case, a method is called one-step Q-Learning. Expression

of this algorithm is as follows:

mailto:nataliya.i.boyko@lpnu.ua

10 N. BOYKO , B. DOKHNIAK, V. KORKISHKO

-

Analyzing expression of the Q-update function can

conclude that the maximum use of this function is not

good usually. In the early stages of learning algorithm Q-

value table contains estimates that are not ideal, and even

in the later stages usage of maximum could lead to a

revaluation of Q-values. Moreover rule of updating

algorithm Q-Learning in combination with the time

difference needs zero value for λ in choosing actions

based on "not greedy" policy (policy action in which

selected from some probability that depends on the value

Q-functions for the state, as opposed to "greedy" when the

selected action with the largest Q-value). These

deficiencies have caused modification algorithm Q-

Learning, which is one of the sources called SARSA

(State-Action-Reward-State-Action), the other - modified

Q-Learning. The main difference between these

algorithms is that updates the rules Q-max values deleted

operator. As a result, it is guaranteed that the error of the

time difference will be calculated correctly whether the

action will be selected according to the "greedy policies"

or not, without having to reset the time difference. If the

action will be selected in accordance with the "greedy

politics", then this rule will fully comply update updates

the formula above.

Peng and Williams in their work in one-step

algorithm Q-Learning introduced another method of

combining Q-Learning and the time difference, called Q

(λ). This method is based on performance of the

conventional one-step update policies to improve the

prognosis of this Q and subsequent use of the time

difference between arranged next to each other "greedy"

predictions. Thus, this method does not depend on which

policy has been selected. [4]

METHODS APPROXIMATION Q - VALUES.

One of the easiest ways of dealing with a large

volume dimension which will run the agent is sampling,

i.e. partitioning state space for small area each table entry

field is Q - values. Using this approach received a gross

generalization states. The success of this event depends

on how efficient this you have to partition function Q -

values. On the one hand for high accuracy it is required to

do more partitions on a small area and, consequently, use

the table Q - values greater volume, resulting in a need for

a larger number of updates during training. On the other

hand, splitting a volume area can lead to the inability to

achieve optimal management policy.

Thus, this method is the problem-oriented and

requires a lot of effort for selection of optimal

partitioning.

There are methods that can accelerate the learning

process by using tables Q - values large. One such method

is the method of Hamming distance. Using this method all

classes are given in the binary form and given threshold

similarity (the number of bits in which each state can be

different from the other). When the correction Q -

valuesat the same time is updated for the selected state

and for all the states to which the Hamming distance is

selected less than a given threshold. Thus, the accelerated

spread of Q - values in the table.

Method CMAC (Cerebellar Model Articulator

Controller), proposed by the Albus (Albus) is a

compromise between using ordinary table Q-values and

approximation of continuous functions. This method is

known in the literature as a "tile" coding (tiles coding).

Approximation CMAC structure consists of several

layers. Each layer is divided into intervals of equal length

("tiles") using the quantization. As each layer has a

quantum function, the "tiles" layers are shifted relative to

each other. Thus, system status, filed at the entrance

CMAC, is associated with a set that overlap shifted tiles.

The weighted sum of the indices of tiles and gives the

output value. Method SMAS had success in solving

difficult problems with continual space values, including

the task of robot control. But nevertheless, despite the

successful use, this algorithm requires quite difficult

settings. The accuracy of functions that approximates is

limited expansion of quantization. High precision requires

a larger number of quantization scales and a long-term

study environment. [7-8]

RBF networks (Radial Bases Functions) closely

related to the CMAC and conventional tables. When

using this method of approximation table instead of the

table of Q - values stored Gaussian table of functions or

quadratic function. Rolling systems passed through all the

functions of the function then summed and as a result, we

obtain approximate values. [3]

Consequently, all of the above methods have a

common drawback - poor scalability when working with

multidimensional space. If the present system with i-

inputs that need for quality approximation N basic

functions, that means that we the need basic

functions. Thus, the number of basic functions grows

exponentially regardless of the dimension of the input

vector.

Later in this article, a paragraph about the robot

control we will consider this method as static

approximation cluster analysis. When using this method,

each step is connected with multiple clusters that provide

assessments of defined class situations. During the

upgrade evaluation of Q - values for the current state

arises update all states that belong to this cluster. The

authors of this method set limitation for this method: the

difficulty settings to create semantic clusters and value

that the cluster once formed cannot be broken in the

future.

It is known that multilayer perceptron is a good

approximation function and, of course, there is a

theoretical explanation. There is Kolmogorov theorem of

mapping neural networks (Kolmogorov Mapping Neural

Network Existence Theorem), which states that the

directly distributed neural network with three layers

(input layer, hidden layer, and output layer) can

accurately represent any continuous function. The work of

Lin is one of the first works in which in order for table to

approximate and table with Q - values is used multilayer

perceptron. Using a neural network to approximate Q -

function has the following advantages:

 Effective scaling for space has more dimensions;

 BUILDING COMPUTER VISION SYSTEMS… 11

11

 Generalization for large and continuous state

space;

 The possibility of implementation of parallel

hardware.

FEATURES OF NEURAL NETWORKS IN

PROBLEMS OF REINFORCEMENT LEARNING

When working with neural networks we distinguish

two areas of training: learning with a teacher (supervisor

learning) and learning without a teacher (unsupervised

learning). The algorithms of reinforcement learning don`t

belong to the above areas and the use of multilayer

perceptron for approximation of functions in problems of

reinforcement learning differs from conventional

supervised learning. Comparing normal usage of

perceptron for approximation problems and its use as part

of the reinforcement algorithm can distinguish two main

points:

 In approximation problems normal training is

provided in some training set whose elements are

constantly repeated. When learning reinforcement

there is no preset training set. Input samples are

formed by the interaction of agent with the

environment, and thus in learning some designs are

more common than others. But when dealing with

the continuous environment – there is high

probability that the input pattern will be met only

once.

 In approximation problems normal training is

conducted on known results, known true values of

approximating function in certain points, which is

not a reinforcement learning, and learning takes

place on estimates Q-values which gradually change

in the learning process.

CONNECTABLE Q-LEARNING

When using connect – approach in the Q-Learning

algorithm tabular representation of Q-functions become

replaced by neural network. The input of the network is

fed by conditions, and initial data is estimated by Q-

values. Thus, no major changes in the classic Q-Learning

are not included, except mechanism of changes in

estimates storage of Q-values. This article uses a method

of neural network offered by Lin which consists of

applying a separate neural network for each action. [9]

Q value of an action

Fig.1. Q-approximation function using a plurality of

neural networks

At each iteration of the algorithm, current state is fed

to the inputs of each neural network, but updating the

weights is performed only for one neural network, whose

actions were selected. When using a one-step Q-Learning,

error correcting network weights is

It is worth noting that Lin in his work used a special

method of correction weights of the neural network,

named backward replay. When using this method, the

weights of the neural network are updated only when you

reach absorbing system state (final state, for example,

when reached any purpose). Using this technique provides

storing all pairs of state - action that meets the system

before reaching the absorbing state. Algorithm updates

using the classic method of Q- values from reverse

repetition:

To reverse repetition:

Perform

1. t ← n

2.

3.

4.

Then, you configure the network that implements the

algorithm using reverse distribution, where the error is

approximately equal

If t = 0 output, otherwise t ← t- 1; transition to step 2.

The idea of the methodology used Lin, lies in the fact

that a correct assessment Q- values is known only at

achieving system absorbing state. In this case, the Q-

rating values equal prize. When removing from absorbing

state evaluation Q-value is reduced by using discount

factor. Scrolling the list of state - in reverse allows you to

perform studies with a more precise estimate. However,

the sequence of steps performed by the system may be

sub-optimal and therefore assess which training will be

carried out, as will be optimum. To address this

shortcoming in their methods Lin used a weighted sum

consisting of two components:

1) Current grades of Q-function

2) Grade obtained using the recursive expression in

step 4 of the algorithm.

Parameter λ, used in step 4 determines which of these

two components need to be provided with more benefits.

When using modified Q- Learning expression in step

3 to be replaced Q (λ)

Algorithm requires making more serious changes that can

be implemented as follows:

1) Add steps 2a and 4a, which are as follows

2a:

4a:

2) Error in step 5 will be as follows:

The obvious drawback of reverse repetition technique

is the need to store information about all the passages that

12 N. BOYKO , B. DOKHNIAK, V. KORKISHKO

have been implemented the system before reaching the

absorbing state.

Also in the work of Sutton is described the use of

algorithm TD by neural networks. This algorithm allows

obtaining good results without storing lists of long pairs

of condition - action. The basis of this algorithm is

vectoring "traces of conformity" which provided the

weights of the neural network. Using "tracks matching"

allows updating the weights take into account the error in

the previous steps, as they remain the weighted sum of the

ingredients weekend. Version of this algorithm adapted

and modified for Q-Learning and Q (λ) below: [1-2]

modified Connectable Q-Learning

Set "tracks matching" zero, e0 = 0

t = 0

Choose action, at

If t > 0, we correct weights:

wt= wt -1 + ⋅ (rt-1 + ⋅ Qt - Qt -1)⋅ et -1

Calculate initial gradient ∇wQt only for that network

whose actions were selected.

et= ∇wQt+ ⋅ ⋅ et -1

Take action and get at “award” rt

If the absorbing state is reached, then we end;

otherwise

t ← t + 1 and transition to step 3.

Connectable Q-Learning for Q (λ)

 Set "tracks matching" zero, e0 = 0

t = 0

Choose action, at

If t> 0, then be corrected weights:

et= ∇wQt+ γ ⋅ λ ⋅ et -1

Calculate the input ingredients ∇wQt only for one

network, the effect of which has been selected.

Take action at and "to receive the award» rt

If the absorbing state is reached - we end, and if not,

 t ← t + 1 and transition to the 3rd step.

When using MCQ-L should be stored neural

networks weight "footprints matching" last mentioned Q-

function Q and reward r. For Q (λ) storage costs more, as

addition is necessary to keep the output gradients between

steps neural network algorithm. Despite this it costs

significantly less than those costs which are necessary for

keeping the list of state-action methods using reverse

repetition.

OVERVIEW OF TASKS FOR ROBOT CONTROL

The problem of robot control in 2-dimensional space

has been solving at different times by different methods.

Most work in this area dedicated to planning routes,

which analyzed the environment with the aim of finding

the most convenient way. One of the first works in this

field is the work of Wilson.

This work led to the birth of a whole class of

problems dealing animates (ANIMAT = ANIMAL +

ROBOT), that works enrolled using an algorithm of

reinforcement. Classic animat of Wilson works in the

discrete world and continually trains in the same

environment. Animata’s purpose – is to learn how to

achieve the goals of any training position for a minimum

number of steps.

All these works are characterized by the fact that

tuition is always done in the same environment, so the

warranty is only that the robot can only operate

effectively in this environment and it is unknown how

effective will be his behavior with the little change of the

environment. In our work, the experiments with the robot,

which learns many pretty typical examples, robot can

function effectively, got a completely unfamiliar

environment.

TASK MANAGEMENT ROBOT

Efficiency of described algorithms in this work

analyzed using developed software simulator, operating in

the 2-dimensional continuous medium. There was a task

for a robot - to reach the goal, not facing any obstacles.

Approximate scheme of sensors and work:

Fig.2. Recognition Scheme interference.

The learning process has been divided into trials. At

each stage of education robot and goal were moved to a

new access point, which took place after the generation of

the new location of obstacles. Robot received award only

in the end of the stages, in all other cases, the reward was

zero. The stage ended in achieving the goals robot and

receiving awards in the form of units. In this article, we

reviewed the case where the robot could not reach the

goal because of the location of obstacles. This case will

be described and listed below.

We generated 26 randomly placed on the map, and

there is a way in which the robot reaches the target (as

shown below).

Processes of exploration and exploitation are

important in the algorithms of reinforcement learning.

The first step is to explore how you can set the

environment by choosing less priority action. The final

step is to go directly to the operation embodied in this

article using the Boltzmann distribution:

where T - the temperature that regulates the degree of

randomness of selection with the largest Q- value.

Results: In an experiment with systems, the main

component, neural network consists of, the problem is

related to the fact that reducing the error rate networks

strongly depends on init weights. Therefore, before

conducting our experiments, we have carefully studied all

the possible distribution of weights for better performance

of our neural network.

Obstacle

Goal

Obstacle

 BUILDING COMPUTER VISION SYSTEMS… 13

13

Fig. 3. Generated Map interference.

Besides using Q-Learning algorithm we should pay

attention to changes in temperature interval T and the

speed of change, because algorithm depends on these

parameters convergence. Because these parameters and

the "cornerstones" were considered:

Fig. 4. Successful implementation of the algorithm.

As we see in the picture above, the algorithm

remembers the way from any cell on the map to the target

and then just executes it. However, we should also

consider the case when the target will be "locked" by

obstacles, such as the unpredictable situation behave

neural network of reinforcement.

Fig. 5. The case when the target is protected

In this case, the neural network and the algorithm

simply loop. The algorithm tries to sort through all the

possible admission to the goal, but each time facing one

and the same obstacles. Since our robot stops only when

the target is reached, program simply loops.

Fig. 6. Charts comparing two methods: interactive

update and feedback repetition

CONCLUSION

We presented a description of the algorithm Q-

Learning and its various options (such as modification Q-

Learning IQ (λ). Each of the above-mentioned algorithms

was presented separately from two sides (direct correction

weights and reverse playback). Experiments and practical

application can be seen in the work and in our created

environment. The researchers created the optimal

conditions of algorithm parameters and compared their

effectiveness.

 So, after all that is said and analyzed above, we can

conclude that the best and most effective algorithm was

modified Q-Learning method with an immediate change

of scale. This algorithm makes gains in many criteria such

as quality, speed and memory cost. It is also worth noting

that the use of the algorithm Q (λ) of reverse repetition.

This combination shows the fastest convergence

14 N. BOYKO , B. DOKHNIAK, V. KORKISHKO

algorithm Q (λ) of reverse repetition of the initial stages

of training and high enough value of the average reward

at the end of training. If we take into account only those

parameters Q (λ), it is much better than other algorithms

using reverse repetition.

 In summary, I would like to point out that the use of

immediate correction of weights provides a better solution

and requires fewer resources. The advantage of immediate

correction weights also lies in the fact that it can be used

to solve problems that are not absorbing state.

REFERENCES

1. Boyko N. 2016 Basic concepts of dynamic recurrent

neural networks development / N. Boyko, P.

Pobereyko // ECONTECHMOD : an international

quarterly journal on economics of technology and

modelling processes. – Lublin: Polish Academy of

Sciences. – Vol. 5, № 2. – P. 63-68.

2. Coelho L. 2013 Building Machine Learning

Systems with Python / Luis Pedro Coelho, Willi

Richert. – Birmingham – Mumbai: Published by

Packt Publishing Ltd. – 290 p.

3. Bishop C. M. 2006 Pattern recognition and machine

learning / Christopher M. Bishop. – Springer

Science+Business Media, LLC. – 78 p.

4. Elkan C. 2003 Using the triangle inequality to

accelebrate k-means / C. Elkan // In Proceedings of

the Twelfth International Conference on Machine

Learning, 2003. – P. 147–153.
5. Matov O.Ia. 2009 Modern technologies of

information resources integration / O.Ia. Matov //

Registration, storage and processing of data. - V. 11,

№ 1, P. 33–42.

6. Khramova I.O. 2009 The use of service-oriented

architectures in the integration of information

resources / I.O. Khramova // Registration, storage

and processing of data. - V. 11, № 2, P. 70–76.

7. Matov O.Ia. 2009 Mathematical models of conflict

losses performance of the mediators ontology for

General use in GRID environment / O.Ia. Matov //

Registration, storage and processing of data. - V. 11,

№ 3, P. 18–25.

8. Matov O.Ia. 2007 The problem of horizontal

integration of information resources in a multi-tiered

organizational structures with dynamic configuration

/ O.Ia. Matov // Registration, storage and processing

of data. - V. 9, № 3, P. 88–97.

9. Matov O.Ia. 2006 Dynamic integration of

information resources of the unified information

infrastructure of the electricity market / O.Ia. Matov

// The functioning and development of electricity and

gas markets: collection of scientific works Institute

of modelling in energy im. H.Ie. Pukhova. - P. 93–

98.

10. Boyko N. 2016 A look trough methods of

intellectual data analysis and their applying in

informational systems / N. Boyko // Computer

sciences and informatopn technologies CSIT 2016 :

Proceedings of XI International scientific conference

CSIT 2016 : proceedings. – Lviv: Publ ofv Lviv

Polytechnik. – P. 183-185.

11. Boyko N. 2016 Basic concepts of dynamic recurrent

neural networks development / N. Boyko, P.

Pobereyko // ECONTECHMOD : an international

quarterly journal on economics of technology and

modelling processes. – Lublin: Polish Academy of

Sciences, Vol. 5, № 2. – P. 63-68.

12. Leskovec J. 2014 Mining of massive datasets / J.

Leskovec, A. Rajaraman, J.D. Ullman. –

Massachusetts: Cambridge University Press. – 470 р.

13. Boyko N. 2017 Use of a cloud storage for

implementation informational proce / N. Boyko //

ECONTECHMOD : an international quarterly

journal on economics of technology and modelling

processes – Vol. 2 No.6. – Branch in Lublin: Polish

Academy of Sciences, 2017. – P. 3-8.

14. Boyko N. 2017 Building computer vision systems

using machine learning algorithms / N. Boyko, N.

Sokil // ECONTECHMOD : an international

quarterly journal on economics of technology and

modelling processes – Vol. 2 No.6. – Branch in

Lublin: Polish Academy of Sciences, 2017. – P. 15-

20.

15. Boyko N. 2016 Using genetic algorithms for

modeling informational processes / N. Boyko //

Computational problems of electrical engineering :

scientific journal "Computational problems

elektotehniky" – Vol. 6 No. 1(10) – Founder and

Publisher Lviv Polytechnic National University,

2016. – P. 55-62.

16. Boyko N. 2016 Application of mathematical models

for improvement of “cloud” data processes

organization / N. Boyko // Mathematical Modeling

and Computing : scientific journal "Computational

problems elektotehniky" – Vol. 3 No. 2 – Founder

and Publisher Lviv Polytechnic National University,

2016. – P. 111-119.

17. Boyko N.I. 2017 The technological capabilities of

the Hyperwave / NI information server. Boyko, O.V.

Kopach // International Scientific and Practical

Conference "Information Technologies and

Computer Modeling", May 15-20, 2017: Abstracts /

Repr. for the issue Volodarsky Ye.T. - Ivano-

Frankivsk: Mr. Golin O. M. - P. 8-11 p.

18. Boyko N.I. 2017 Perspective technologies of

research of large data in distributed information

systems / N.I. Boyko // Radioelectronics, computer

science, management. № 4. - Zaporozhye:

Zaporizhzhya National Technical University. - P. 66-

77.

19. Maass W. 2002 Real-time computing without stable

states: a new framework for neural computations

based on perturbations / W. Maass, T. Natschger, H.

Markram / Neural Computation : proceedings. –

Switzerland: Institute for Theoretical Computer

Science, Vol. 11. – P. 2531–2560.

20. Schrauwen B., Verstraeten D., Campenhout J.V.
2007 An overview of reservoir computing theory,

applications and implementations / B. Schrauwen, D.

Verstraeten, J.V. Campenhout // Proc. of the 15th

European Symp. on Artificial Neural Networks :

proceedings. – Belgium: Bruges,. P. 471–482.

