Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Environmental management systems (EMS) are essential in promoting sustainable practices and mitigating the adverse effects of human activities on the environment. As technology continues to advance, there is an increas-ing opportunity to utilize advanced technologies to improve environmental management systems. This article examines the potential of different advanced technologies, such as artificial intelligence (AI), blockchain, big data, and the Internet of Things (IoT), within the context of environmental management systems. This article intends to offer valuable insights to researchers, practitioners, and policymakers by examining the potential uses of AI, blockchain, big data, and IoT in environmental management systems. The goal is to demonstrate how these ad-vanced technologies can be leveraged to enhance sustainability, boost environmental performance, and yield favourable environmental results across different sectors and industries.
Wydawca
Czasopismo
Rocznik
Tom
Strony
33--44
Opis fizyczny
Bibliogr. 110 poz., rys., tab.
Twórcy
autor
- Joint Doctoral School Silesian University of Technology Faculty of Organization and Management Department of Applied Social Sciences Roosevelt 26 Street, 41-800 Zabrze, Poland
Bibliografia
- 1. C. Choi, C. Kim, and C. Kim, “Towards Sustainable Environ-mental Policy and Management in the Fourth Industrial Revolution: Evidence from Big Data Analytics,” The Journal of Asian Finance, Economics and Business, vol. 6, no. 3, pp. 185-192, Aug. 2019, doi: https://doi.org/10.13106/jafeb.2019.vol6.no3.185.
- 2. M. Javaid, A. Haleem, R.P. Singh, R. Suman, and E.S. Gonzalez, “Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability,” Sus-tainable Operations and Computers, vol. 3, no. 1, pp. 203-217, Jan. 2022, doi: https://doi.org/10.1016/j.susoc.2022.01.008.
- 3. R.R. Hernandez, M.S. Mayernik, M.L. Murphy-Mariscal, and M.F. Allen, “Advanced Technologies and Data Man-agement Practices in Environmental Science: Lessons from Academia,” BioScience, vol. 62, no. 12, pp. 1067-1076, Dec. 2012, doi: https://doi.org/10.1525/bio.2012.62.12.8.
- 4. P.V. Thayyib et al., “State-of-the-Art of Artificial Intelli-gence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary,” Sustainability, vol. 15, no. 5, p. 4026, Jan. 2023, doi: https://doi.org/10.3390/su15054026.
- 5. H. Berg, “Unlocking the potential of Industry 4.0 to reduce the environmental impact of production,” The Wuppertal Institute for Climate, 2021. Available: https://www.eio-net.europa.eu/etcs/etc-wmge/products/etc-wmge-re-ports/unlocking-the-potential-of-industry-4-0-to-reduce-the-environmental-impact-of-production/@@down-load/file/Final%20for%20website.pdf.
- 6. E. Albelda Pérez, C. Correa Ruiz, and F. Carrasco Fenech, “Environmental management systems as an embedding mechanism: a research note,” Accounting, Auditing & Ac-countability Journal, vol. 20, no. 3, pp. 403-422, Jun. 2007, doi: https://doi.org/10.1108/09513570710748562.
- 7. R. Canestrino, M. Ćwiklicki, P. Kafel, M. Wojnarowska, and P. Magliocca, “The digitalization in EMAS-registered organizations: evidences from Italy and Poland,” The TQM Journal, vol. 32, no. 4, pp. 673-695, May 2020, doi: https://doi.org/10.1108/tqm-12-2019-0301.
- 8. R.Z. Szabó, B. Szedmák, A. Tajti, and P. Bera, “Environmen-tal Sustainability, Digitalisation, and the Entrepreneurial Perception of Distances as Drivers of SMEs’ Internationali-sation,” Sustainability, vol. 15, no. 3, p. 2487, Jan. 2023, doi: https://doi.org/10.3390/su15032487.
- 9. O. Diófási-Kovács and N. Judit, “Beyond CO2 emissions – The role of digitalization in multi-dimensional environ-mental performance measurement,” Environmental and Sustainability Indicators, vol. 18, p. 100252, Apr. 2023, doi: https://doi.org/10.1016/j.indic.2023.100252.
- 10. European Environment Agency, “environmental manage-ment system — European Environment Agency,” www.eea.europa.eu. https://www.eea.eu-ropa.eu/help/glossary/eea-glossary/environmental-man-agement-system (accessed Apr. 01, 2023).
- 11. European Commission, “Advanced technologies,” single-market-economy.ec.europa.eu. https://single-market-economy.ec.europa.eu/industry/strategy/advanced-tech-nologies_en.
- 12. P. Boucher, “Artificial intelligence: How does it work, why does it matter, and what can we do about it?,” 2020. Avail-able: https://www.europarl.europa.eu/Reg-Data/etudes/STUD/2020/641547/EPRS_STU(2020)641547_EN.pdf.
- 13. A. Sestino, M.I. Prete, L. Piper, and G. Guido, “Internet of Things and Big Data as enablers for business digitalization strategies,” Technovation, vol. 98, no. 102173, p. 102173, Dec. 2020, doi: https://doi.org/10.1016/j.technova-tion.2020.102173.
- 14. A. Kuzior and A. Kwilinski, “Cognitive Technologies and Ar-tificial Intelligence in Social Perception,” Management Sys-tems in Production Engineering, vol. 30, no. 2, pp. 109-115, May 2022, doi: https://doi.org/10.2478/mspe-2022-0014.
- 15. M. Yazdani, C. Kahraman, P. Zarate, and S.C. Onar, “A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis,” Expert Systems with Ap-plications, vol. 115, pp. 474-485, Jan. 2019, doi: https://doi.org/10.1016/j.eswa.2018.08.017.
- 16. S. Kumar, R. Sureka, W.M. Lim, S. Kumar Mangla, and N. Goyal, “What do we know about business strategy and en-vironmental research? Insights from Business Strategy and the Environment,” Business Strategy and the Environment, vol. 30, no. 8, May 2021, doi: https://doi.org/10.1002/bse.2813.
- 17. H. Wang, T. Zhang, Y. Quan, and R. Dong, “Research on the framework of the Environmental Internet of Things,” Inter-national Journal of Sustainable Development & World Ecol-ogy, vol. 20, no. 3, pp. 199-204, Apr. 2013, doi: https://doi.org/10.1080/13504509.2013.783517.
- 18. Z. Zhang, H. He, J. Guo, and R. Han, “Velocity prediction and profile optimization based real-time energy manage-ment strategy for Plug-in hybrid electric buses,” Applied Energy, vol. 280, p. 116001, Dec. 2020, doi: https://doi.org/10.1016/j.apenergy.2020.116001.
- 19. S. Drobyazko and T. Hilorme, “Influence of Sustainable De-velopment of Space Activities on Earth Ecology,” ProQuest, vol. 940, Dec. 2021, doi: https://doi.org/10.1088/1755-1315/940/1/012014.
- 20. G. Das, S. Li, R.A. Tunio, R.H. Jamali, I. Ullah, and K.W.T. Fernando, “The implementation of green supply chain management (GSCM) and environmental management system (EMS) practices and its impact on market compet-itiveness during COVID-19,” Environmental Science and Pollution Research, vol. 30, May 2023, doi: https://doi.org/10.1007/s11356-023-27077-z.
- 21. K. Fenton, S. Simske, and J. Luu, “Mitigation of Chemical Reporting Liabilities through Systematic Modernization of Chemical Hazard and Safety Data Management Systems,” ACS omega, vol. 8, no. 5, pp. 4928-4936, Jan. 2023, doi: https://doi.org/10.1021/acsomega.2c07244.
- 22. R.T. Munodawafa and S.K. Johl, “Design and Development of an Eco-innovation Management Information System to Accelerate Firms’ Digital Transformation Strategy,” IEEE Access, vol. 10, pp. 1-1, 2022, doi: https://doi.org/10.1109/access.2022.3163248.
- 23. EUR-Lex, “Document 32013D0131,” eur-lex.europa.eu, 2013. https://eur-lex.eu-ropa.eu/eli/dec/2013/131(1)/oj/eng.
- 24. M.K. Nasir, R. Md Noor, M.A. Kalam, and B.M. Masum, “Reduction of Fuel Consumption and Exhaust Pollutant Us-ing Intelligent Transport Systems,” The Scientific World Journal, vol. 2014, pp. 1-13, 2014, doi: https://doi.org/10.1155/2014/836375.
- 25. M.M. Gandhi, D.S. Solanki, R.S. Daptardar, and N.S. Baloor-kar, “Smart Control of Traffic Light Using Artificial Intelli-gence,” in 2020 5th IEEE International Conference on Re-cent Advances and Innovations in Engineering (ICRAIE), Dec. 2020. doi: https://doi.org/10.1109/icraie51050.2020.9358334.
- 26. S. Khan, A. Adnan, and N. Iqbal, “Applications of Artificial Intelligence in Transportation,” IEEE Xplore, Jul. 01, 2022. https://ieeexplore.ieee.org/abstract/document/9872928 (accessed Oct. 05, 2022).
- 27. T. C. Truong, “The Impact of Digital Transformation on En-vironmental Sustainability,” Advances in Multimedia, vol. 2022, pp. 1-12, May 2022, doi: https://doi.org/10.1155/2022/6324325.
- 28. E.K. Nti, S.J. Cobbina, E.E. Attafuah, E. Opoku, and M.A. Gyan, “Environmental sustainability technologies in biodi-versity, energy, transportation and water management us-ing artificial intelligence: A systematic review,” Sustainable Futures, vol. 4, p. 100068, 2022, doi: https://doi.org/10.1016/j.sftr.2022.100068.
- 29. I.P. Chochliouros et al., “V2X Communications for the Sup-port of GLOSA and Intelligent Intersection Applications,” in Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops, 2021, pp. 138-152. doi: https://doi.org/10.1007/978-3-030-79157-5_13.
- 30. V. Magaña and M.M. Organero, “Reducing Stress and Fuel Consumption Providing Road Information,” Advances in Intelligent Systems and Computing, vol. 376, pp. 23-31, Jan. 2015, doi: https://doi.org/10.1007/978-3-319-19695-4_3.
- 31. G. Guido, D. Rogano, A. Vitale, V. Astarita, and Demetrio Carmine Festa, “Big data for public transportation: A DSS framework,” in 5th IEEE International Conference on Mod-els and Technologies for Intelligent Transportation Sys-tems, Jun. 2017. doi: https://doi.org/10.1109/mtits.2017.8005635.
- 32. F. Baumgarte, R. Keller, F. Röhrich, L. Valett, and D. Zinsbacher, “Revealing influences on carsharing users’ trip distance in small urban areas,” Transportation Research Part D: Transport and Environment, vol. 105, p. 103252, Apr. 2022, doi: https://doi.org/10.1016/j.trd.2022.103252.
- 33. A. Tsakiri, N. Lampiris, J. Prantalos, P. Mylonas, G. Aifa-dopoulou, and Michalis Fousteris, “Versatile Car Sharing Modelling for Sustainable Mobility with Embedded Intelli-gent Modules,” in ACM International Conference Proceed-ing Series, Sep. 2022. doi: https://doi.org/10.1145/3549737.3549791.
- 34. L. Bohm, F. Peters, P. Bossauer, D. Lawo, C. Pakusch, and G. Stevens, “Designing a Mobility Intelligence System for Decision-making with Shared Mobility Data,” in 2022 Inter-national Conference on ICT for Sustainability, ICT4S 2022, Jun. 2022. doi: https://doi.org/10.1109/ict4s55073.2022.00017.
- 35. H. Gökçe and K.U. Gökçe, “Software Interoperability for Energy Efficient Building Operations Based on the IFC Data Model Standard,” in Progress in Sustainable Energy Tech-nologies Vol II: Creating Sustainable Development, Jan. 2014, pp. 309-318. doi: https://doi.org/10.1007/978-3-319-07977-6_21.
- 36. S. Agostinelli, F. Cumo, G. Guidi, and C. Tomazzoli, “Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence,” Energies, vol. 14, no. 8, p. 2338, Apr. 2021, doi: https://doi.org/10.3390/en14082338.
- 37. L. Farahzadi and M. Kioumarsi, “Application of machine learning initiatives and intelligent perspectives for CO2 emissions reduction in construction,” Journal of Cleaner Production, p. 135504, Dec. 2022, doi: https://doi.org/10.1016/j.jclepro.2022.135504.
- 38. S. Bang and B. Andersen, “Utilising Artificial Intelligence in Construction Site Waste Reduction,” Journal of Engineer-ing, Project, and Production Management, vol. 12, no. 3, Sep. 2022, doi: https://doi.org/10.32738/jeppm-2022-0022.
- 39. P. Desai, S. Sandbhor, and A. Kaushik, “AI and BIM-based Construction defects, rework, and waste optimization,” in International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, Mar. 2023, pp. 1-6. doi: https://doi.org/10.1109/esci56872.2023.10099726.
- 40. M. I. Shah et al., “Performance Evaluation of Soft Compu-ting for Modeling the Strength Properties of Waste Substi-tute Green Concrete,” Sustainability, vol. 13, no. 5, p. 2867, Mar. 2021, doi: https://doi.org/10.3390/su13052867.
- 41. L. Farahzadi and M. Kioumarsi, “Intelligent Initiatives to Reduce CO2 Emissions in Construction,” in ECCOMAS: Eu-ropean Community on Computational Methods in Applied Sciences, Scipedia, Jan. 2022. doi: https://doi.org/10.23967/eccomas.2022.150.
- 42. C. Gomez-Otero, R. Uría-Martínez, and J. Caffarel, “Cli-mApp: A novel approach of an intelligent HVAC control system,” in Iberian Conference on Information Systems and Technologies, Jun. 2012, pp. 1-6.
- 43. Y.-Y. Chen, Y.-H. Lin, C.-C. Kung, M.-H. Chung, and I-Hsuan. Yen, “Design and Implementation of Cloud Analytics-As-sisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Manage-ment for Smart Homes,” Sensors, vol. 19, no. 9, p. 2047, May 2019, doi: https://doi.org/10.3390/s19092047.
- 44. S. Arvidsson, M. Gullstrand, B. Sirmacek, and M. Riveiro, “Sensor Fusion and Convolutional Neural Networks for In-door Occupancy Prediction Using Multiple Low-Cost Low-Resolution Heat Sensor Data,” Sensors, vol. 21, no. 4, p. 1036, Feb. 2021, doi: https://doi.org/10.3390/s21041036.
- 45. A. Chopde, N. Bharate, S. Bhattar, A. Kunvar, and S. Bhad-wal, “Trash Can! An AI system for automatic classification of waste,” IEEE Xplore, May 01, 2022. https://ieeex-plore.ieee.org/abstract/document/9844351?casa_to-ken=-nN6OC4O6roAAAAA:aGlEDxGRh7gUFBL28JWMy-cJuUn4A8p2wMpkDgdCiXURfpbcU4sn3graR-gTiJjmNNS1d9Q56NUQ (accessed May 18, 2023).
- 46. S. Sen, Dharmendra Yadeo, P. Kumar, and M. Kumar, “Ma-chine learning and predictive control-based energy man-agement system for smart buildings,” in Artificial Intelli-gence and Machine Learning in Smart City Planning, Jan. 2023, pp. 199-220. doi: https://doi.org/10.1016/b978-0-323-99503-0.00015-6.
- 47. A.M. Suduc and M. Bizoi, “AI shapes the future of web con-ferencing platforms,” Procedia Computer Science, vol. 214, pp. 288-294, Jan. 2022, doi: https://doi.org/10.1016/j.procs.2022.11.177.
- 48. D.E. Blanco, B. Lee, and M.A. Modestino, “Optimizing or-ganic electrosynthesis through controlled voltage dosing and artificial intelligence,” Proceedings of the National Academy of Sciences, vol. 116, no. 36, pp. 17683-17689, Aug. 2019, doi: https://doi.org/10.1073/pnas.1909985116.
- 49. Z. Ye, J. Yang, N. Zhong, X. Tu, J. Jia, and J. Wang, “Tackling environmental challenges in pollution controls using artifi-cial intelligence: A review,” Science of The Total Environ-ment, vol. 699, p. 134279, Jan. 2020, doi: https://doi.org/10.1016/j.scitotenv.2019.134279.
- 50. W. Qing, “Global Practice of AI and Big Data in Oil and Gas Industry,” in Machine Learning and Data Science in the Oil and Gas Industry: Best Practices, Tools, and Case Studies, Jan. 2021, pp. 181-210. doi: https://doi.org/10.1016/b978-0-12-820714-7.00009-1.
- 51. K.L. Johnston, M.L. Phillips, N.A. Esmen, and T.A. Hall, “Evaluation of an Artificial Intelligence Program for Esti-mating Occupational Exposures,” The Annals of Occupa-tional Hygiene, vol. 49, no. 2, Dec. 2004, doi: https://doi.org/10.1093/annhyg/meh072.
- 52. M.T. Gaudio, G. Coppola, L. Zangari, S. Curcio, S. Greco, and S. Chakraborty, “Artificial Intelligence-Based Optimi-zation of Industrial Membrane Processes,” Earth systems and environment, vol. 5, no. 2, pp. 385-398, Jun. 2021, doi: https://doi.org/10.1007/s41748-021-00220-x.
- 53. J.L. McDonagh, W.C. Swope, R.L. Anderson, M.A. Johnston, and D.J. Bray, “What can digitisation do for formulated product innovation and development?” Polymer Interna-tional, vol. 70, no. 3, pp. 248-255, Jul. 2020, doi: https://doi.org/10.1002/pi.6056.
- 54. R. Arboretti et al., “Machine learning and design of exper-iments with an application to product innovation in the chemical industry,” Journal of Applied Statistics, vol. 49, no. 10, pp. 2674-2699, Mar. 2021, doi: https://doi.org/10.1080/02664763.2021.1907840.
- 55. M. Pournader, Y. Shi, S. Seuring, and S.C.L. Koh, “Block-chain applications in supply chains, transport and logistics: a systematic review of the literature,” International Jour-nal of Production Research, vol. 58, no. 7, pp. 1-19, Aug. 2019, doi: https://doi.org/10.1080/00207543.2019.1650976.
- 56. A. Noor, “Adoption of Blockchain Technology Facilitates a Competitive Edge for Logistic Service Providers,” Sustaina-bility, vol. 14, no. 23, pp. 15543-15543, Nov. 2022, doi: https://doi.org/10.3390/su142315543.
- 57. W. Li, L. Wang, Y. Li, and B. Liu, “A blockchain-based emis-sions trading system for the road transport sector: policy design and evaluation,” Climate Policy, vol. 21, no. 3, pp. 337-352, Nov. 2020, doi: https://doi.org/10.1080/14693062.2020.1851641.
- 58. Y. Li, M.K. Lim, and C. Wang, “An intelligent model of green urban distribution in the blockchain environment,” Re-sources, Conservation and Recycling, vol. 176, no. 176, p. 105925, Jan. 2022, doi: https://doi.org/10.1016/j.rescon-rec.2021.105925.
- 59. X. Yu and X. Wang, “Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology,” Energies, vol. 16, no. 6, pp. 2606-2606, Mar. 2023, doi: https://doi.org/10.3390/en16062606.
- 60. S.A. Renu and B.G. Banik, “Implementation of a Secure Ride-Sharing DApp Using Smart Contracts on Ethereum Blockchain,” International Journal of Safety and Security Engineering, vol. 11, no. 2, pp. 167-173, Apr. 2021, doi: https://doi.org/10.18280/ijsse.110205.
- 61. A. Lanko, N. Vatin, and A. Kaklauskas, “Application of RFID combined with blockchain technology in logistics of con-struction materials,” MATEC Web of Conferences, vol. 170, p. 03032, 2018, doi: https://doi.org/10.1051/matec-conf/201817003032.
- 62. L. Pellegrini, S. Campi, M. Locatelli, G. Pattini, G.M. Di Giuda, and L. C. Tagliabue, “Digital Transition and Waste Management in Architecture, Engineering, Construction, and Operations Industry,” Frontiers in Energy Research, vol. 8, Nov. 2020, doi: https://doi.org/10.3389/fenrg.2020.576462.
- 63. F. Elghaish, M.R. Hosseini, T. Kocaturk, M. Arashpour, and M. Bararzadeh Ledari, “Digitalised circular construction supply chain: An integrated BIM-Blockchain solution,” Au-tomation in Construction, vol. 148, p. 104746, Apr. 2023, doi: https://doi.org/10.1016/j.autcon.2023.104746.
- 64. Y. Matsuda, Y. Yamazaki, H. Oki, Y. Takeda, D. Sagawa, and K. Tanaka, “Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control,” Energies, vol. 14, no. 22, p. 7484, Nov. 2021, doi: https://doi.org/10.3390/en14227484.
- 65. A. Kuzior, M. Sira, and P. Brozek, “Using Blockchain and Ar-tificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency,” Virtual Economics, vol. 5, no. 3, pp. 69-90, 2022.
- 66. W. Du, X. Ma, H. Yuan, and Y. Zhu, “Blockchain technology-based sustainable management research: the status quo and a general framework for future application,” Environ-mental Science and Pollution Research, vol. 29, no. 39, pp. 58648-58663, Jul. 2022, doi: https://doi.org/10.1007/s11356-022-21761-2.
- 67. M. Marzband, E. Yousefnejad, A. Sumper, and J.L. Domínguez-García, “Real time experimental implementa-tion of optimum energy management system in standalone Microgrid by using multi-layer ant colony opti-mization,” International Journal of Electrical Power & En-ergy Systems, vol. 75, pp. 265-274, Feb. 2016, doi: https://doi.org/10.1016/j.ijepes.2015.09.010.
- 68. E. Schiller, E. Esati, S. R. Niya, and B. Stiller, “Blockchain on MSP430 with IEEE 802.15.4,” in Conference on Local Com-puter Networks, LCN. 45th IEEE Conference on Local Com-puter Networks, Sydney: LCN, Nov. 2020. doi: https://doi.org/10.1109/lcn48667.2020.9314805.
- 69. W. Konhäuser, “Digitalization in Buildings and Smart Cities on the Way to 6G,” Wireless Personal Communications, vol. 121, no. 2, Sep. 2021, doi: https://doi.org/10.1007/s11277-021-09069-9.
- 70. G. Ongena, K. Smit, B. Jarno, G. Adams, Y. Roelofs, and P. Ravesteyn, “Blockchain-based Smart Contracts in Waste Management: A Silver Bullet?,” Business Strategy and the Environment, vol. 31, no. 1, Jun. 2018, doi: https://doi.org/10.18690/978-961-286-170-4.23.
- 71. S. Shrivastava, A. Tripathi, and R. Yamini, “Blockchain-based Smart Waste Management System,” International Journal of Innovative Technology and Exploring Engineer-ing, vol. 8, no. 11S, pp. 1030-1034, Oct. 2019, doi: https://doi.org/10.35940/ijitee.k1212.09811s19.
- 72. L. Alves, E. Ferreira Cruz, S. I. Lopes, P. M. Faria, and A. M. Rosado da Cruz, “Towards circular economy in the textiles and clothing value chain through blockchain technology and IoT: A review,” Waste Management & Research: The Journal for a Sustainable Circular Economy, vol. 40, no. 1, p. 0734242X2110528, Oct. 2021, doi: https://doi.org/10.1177/0734242x211052858.
- 73. D. Nallaperuma et al., “Online Incremental Machine Learn-ing Platform for Big Data-Driven Smart Traffic Manage-ment,” IEEE Transactions on Intelligent Transportation Sys-tems, vol. 20, no. 12, pp. 4679-4690, Dec. 2019, doi: https://doi.org/10.1109/tits.2019.2924883.
- 74. P. Killeen, B. Ding, I. Kiringa, and T. Yeap, “IoT-based pre-dictive maintenance for fleet management,” Procedia Computer Science, vol. 151, pp. 607-613, 2019, doi: https://doi.org/10.1016/j.procs.2019.04.184.
- 75. S. Proto et al., “REDTag: A Predictive Maintenance Frame-work for Parcel Delivery Services,” IEEE Access, vol. 8, no. 58, pp. 14953-14964, 2020, doi: https://doi.org/10.1109/access.2020.2966568.
- 76. M.Y.L. Chew and K. Yan, “Enhancing Interpretability of Data-Driven Fault Detection and Diagnosis Methodology with Maintainability Rules in Smart Building Manage-ment,” Journal of Sensors, vol. 2022, pp. 1-48, Jan. 2022, doi: https://doi.org/10.1155/2022/5975816.
- 77. M. Martínez-Rojas, M. J. Gacto, A. Vitiello, G. Acampora, and Jose Manuel Soto-Hidalgo, “An Internet of Things and Fuzzy Markup Language Based Approach to Prevent the Risk of Falling Object Accidents in the Execution Phase of Construction Projects,” Sensors, vol. 21, no. 19, pp. 6461–6461, Sep. 2021, doi: https://doi.org/10.3390/s21196461.
- 78. J. Kim et al., “Occupant comfort and behavior: High-reso-lution data from a 6-month field study of personal comfort systems with 37 real office workers,” Building and Environ-ment, vol. 148, pp. 348-360, Jan. 2019, doi: https://doi.org/10.1016/j.buildenv.2018.11.012.
- 79. S.A. Hashmi, C.F. Ali, and S. Zafar, “Internet of things and cloud computing-based energy management system for demand side management in smart grid,” International Journal of Energy Research, vol. 45, no. 1, pp. 1007-1022, Oct. 2020, doi: https://doi.org/10.1002/er.6141.
- 80. Q. Lele and K. Lihua, “Technical Framework Design of Safety Production Information Management Platform for Chemical Industrial Parks Based on Cloud Computing and the Internet of Things,” International Journal of Grid and Distributed Computing, vol. 9, no. 6, pp. 299–314, Jun. 2016, doi: https://doi.org/10.14257/ijgdc.2016.9.6.28.
- 81. European Commission and Executive Agency for Small and Medium-sized Enterprises, Artificial intelligence: critical industrial applications : report on market analysis of prior-itised value chains, the most critical AI applications and the conditions for AI rollout. LU: Publications Office of the Eu-ropean Union, 2020. Available: https://op.eu-ropa.eu/en/publication-detail/-/publication/09a1b19f-93fa-11ea-aac4-01aa75ed71a1/language-en.
- 82. J. Hart, I. Hunt, and V. Shankararaman, “. Environmental management systems-A role for AI?,” in Workshop Binding Environmental Sciences and Artificial Intelligence (BESAI’98), 1998, pp. 1-10.
- 83. U. Cortés and M. Sànchez–Marrè, “Binding Environmental Sciences and Artificial Intelligence in Environmental Mod-elling & Software.” Environmental Modelling and So-ftware, vol. 14, pp. 335-337, Jan. 1999.
- 84. U. Cortés, M. Sànchez-Marrè, L. Ceccaroni, I. R-Roda, and M. Poch, “Artificial Intelligence and Environmental Deci-sion Support Systems,” Applied Intelligence, vol. 13, no. 1, pp. 77-91, 2000, doi: https://doi.org/10.1023/a:1008331413864.
- 85. Amazon, “Artificial Intelligence Services,” Amazon Web Services, Inc. https://aws.amazon.com/machine-learn-ing/ai-services/?nc1=h_ls (accessed Apr. 06, 2023).
- 86. Microsoft, “Azure AI Platform – Artificial Intelligence Ser-vice | Microsoft Azure,” azure.microsoft.com. https://az-ure.microsoft.com/en-us/solutions/ai/#overview.
- 87. 451 Research, “The Carbon Reduction Opportunity of Moving to Amazon Web Services,” 2019.
- 88. W. Hoek, “Digitalisation on the cloud must absolutely be-come a priority.,” www.amcsgroup.com, 2020. https://www.amcsgroup.com/blogs/why-smbs-need-to-move-to-the-cloud-with-amcs-platform/#amcs-platform (accessed Apr. 06, 2023).
- 89. European Commission Environment Directorate-General, “What is EMAS?” 2001. Accessed: Jul. 17, 2023. [Online]. Available: https://www.isprambiente.gov.it/content-files/01377800/1377885-fs-iso-en.pdf.
- 90. . Testa, F. Rizzi, T. Daddi, N.M. Gusmerotti, M. Frey, and F. Iraldo, “EMAS and ISO 14001: the differences in effec-tively improving environmental performance,” Journal of Cleaner Production, vol. 68, pp. 165-173, Apr. 2014, doi: https://doi.org/10.1016/j.jclepro.2013.12.061.
- 91. A. Erauskin-Tolosa, E. Zubeltzu-Jaka, I. Heras-Saizarbitoria, and O. Boiral, “ISO 14001, EMAS and environmental per-formance: A meta-analysis,” Business Strategy and the En-vironment, vol. 29, no. 3, pp. 1145-1159, Dec. 2019, doi: https://doi.org/10.1002/bse.2422.
- 92. F.F. Fagioli, L. Paolotti, and A. Boggia, “Trends in Environ-mental Management Systems Research. A Content Analy-sis,” Environmental and Climate Technologies, vol. 26, no. 1, pp. 46-63, Jan. 2022, doi: https://doi.org/10.2478/rtuect-2022-0005.
- 93. F. Gualandri and A. Kuzior, “Home Energy Management Systems Adoption Scenarios: The Case of Italy,” Energies, vol. 16, no. 13, pp. 4946-4946, Jun. 2023, doi: https://doi.org/10.3390/en16134946.
- 94. C. Welsch, “As the world goes digital, datacenters that make the cloud work look to renewable energy sources,” Microsoft News Centre Europe, Nov. 23, 2022. https://news.microsoft.com/europe/features/as-the-world-goes-digital-datacenters-that-make-the-cloud-work-look-to-renewable-energy-sources/.
- 95. W.-Y. Chang, “A Data Envelopment Analysis on the Perfor-mance of Using Artificial Intelligence-Based Environmental Management Systems in the Convention and Exhibition In-dustry,” Ekoloji, vol. 28, no. 107, pp. 3515-3521, 2019.
- 96. J. Lohmer, E. Ribeiro da Silva, and R. Lasch, “Blockchain Technology in Operations & Supply Chain Management: A Content Analysis,” Sustainability, vol. 14, no. 10, p. 6192, May 2022, doi: https://doi.org/10.3390/su14106192.
- 97. S. Pu and J. S. L. Lam, “The benefits of blockchain for digital certificates: A multiple case study analysis,” Technology in Society, vol. 72, p. 102176, Feb. 2023, doi: https://doi.org/10.1016/j.techsoc.2022.102176.
- 98. World Economic Forum, “How technology is enabling mul-tistakeholder engagement,” World Economic Forum, 2023. https://www.weforum.org/agenda/2023/01/how-technology-is-enabling-multi-stakeholder-engagement-davos2023/.
- 99. A. Kuzior, S. Arefiev, and Z. Poberezhna, “Informatization of innovative technologies for ensuring macroeconomic trends in the conditions of a circular economy,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 9, no. 1, pp. 10-20, Mar. 2023, doi: https://doi.org/10.1016/j.joitmc.2023.01.001.
- 100. A. Parmentola, A. Petrillo, I. Tutore, and F. De Felice, “Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the per-spective of Sustainable Development Goals (SDGs),” Busi-ness Strategy and the Environment, vol. 31, no. 1, Sep. 2021, doi: https://doi.org/10.1002/bse.2882.
- 101. T. Kawabata et al., “Blockchain Technology and Environ-mental Sustainability,” 2020. Available: https://wedocs.unep.org/bitstream/han-dle/20.500.11822/34226/FB019.pdf?sequence=1&isAl-lowed=y.
- 102. Q. Jones, “IoT-Based Environmental Monitoring: Types and Use Cases,” www.digi.com, Apr. 15, 2022. https://www.digi.com/blog/post/iot-based-environmen-tal-monitoring.
- 103. A. Kawasaki et al., “Data Integration and Analysis System (DIAS) Contributing to Climate Change Analysis and Disas-ter Risk Reduction,” Data Science Journal, vol. 16, Sep. 2017, doi: https://doi.org/10.5334/dsj-2017-041.
- 104. O. Farooq, P. Singh, M. Hedabou, W. Boulila, and B. Ben-jdira, “Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things,” Sensors, vol. 23, no. 5, p. 2427, Feb. 2023, doi: https://doi.org/10.3390/s23052427.
- 105. M. Esposito, L. Palma, A. Belli, L. Sabbatini, and P. Pierle-oni, “Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review,” Sensors, vol. 22, no. 6, p. 2124, Mar. 2022, doi: https://doi.org/10.3390/s22062124.
- 106. C. Chandrakumar, R. Prasanna, M. Stephens, and M.L. Tan, “Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review,” Frontiers in Sensors, vol. 3, Nov. 2022, doi: https://doi.org/10.3389/fsens.2022.1020202.
- 107. OECD, “Enhancing the contribution of digitalisation to the smart cities of the future,” 2019.
- 108. G. Grander, L.F. da Silva, and E.D.R. Santibañez Gonzalez, “Big data as a value generator in decision support systems: a literature review,” Revista de Gestão, vol. 28, no. 3, pp. 205-222, Jul. 2021, doi: https://doi.org/10.1108/rege-03-2020-0014.
- 109. A. Kuzior and J. Zozuľak, “Adaptation of the Idea of Phrone-sis in Contemporary Approach to Innovation,” Manage-ment Systems in Production Engineering, vol. 27, no. 2, pp. 84-87, Jun. 2019, doi: https://doi.org/10.1515/mspe-2019-0014.
- 110. P. Fobel and A. Kuzior, “The future (Industry 4.0) is closer than we think. Will it also be ethical?” in AIP Conference Proceedings, 2019, doi: https://doi.org 10.1063/1.5137987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93951ad0-7c48-4fba-ae48-7341934ecf6c