PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Mn Addition on the Corrosion and Fatigue Properties of a Progressive Secondary A357 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the modern automotive industry is looking for lightweight alternatives to minimize car emissions and fuel consumption, recycled Al-Si alloys play a key role in achieving this due to their lightweight, high specific strength, good castability, and corrosion resistance. In contrast to many other benefits, these alloys have reduced metallurgical micropurity as a result of recycling. The most significant complication of alloys is iron contamination. Higher Fe contents cause β-Fe-intermetallic phases in the form of long and brittle platelets that negatively affect corrosion resistance and fatigue. Neutralizing elements lead to the formation of less harmful α-Fe-rich phases, therefore a positive effect on properties is also expected. For this reason, the study investigates the effect of Mn addition on the corrosion properties achieved by immersion test and potentiodynamic polarization test and fatigue of secondary AlSi7Mg0.6 secondary alloy.
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • [1] M. Zamani, Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature. Licentiate thesis, Jönköping University, Jönköping (2015). ISBN 978-91-87289-08-8
  • [2] J. Svobodova, M. Lunak, M. Lattner, Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting. Manufacturing Technology 19 (6), 1041-1046 (2019). DOI: https://doi.org/10.21062/ujep/415.2019/a/1213-2489/MT/19/6/104
  • [3] L. Kuchariková, et al., Quality assessment of Al Castings Produced in Sand Molds Using Image and CT Analyses. Journal of Materials Engineering and Performance 28 (3), (2019). DOI: https://doi.org/10.1007/s11665-019-04040-z
  • [4] E. Kantoríková, M. Kuriš, R. Patirčák, Heat treatment of Al-Si7Mg0.3 aluminium alloys with increased zirconium and titanium content. Archives of Foundry Engineering 21 (I. 2), 89-96 (2021). DOI: https://doi.org/10.24425/afe.2021.136103
  • [5] https://www.novelis.com/recycled-aluminium-as-key-enabler-of-decarbonization/
  • [6] L. Shehadeh, I. Jalham, The effect of adding different percentages of manganese (Mn) and copper (Cu) on the mechanical behavior of aluminum. Jordan Journal of Mechanical and Industrial Engineering 10 (1), 19-26 (2016).
  • [7] V. Deev et al., Crystallization Behavior and Properties of Hypereutectic Al-Si Alloys with Different Iron Content. Archives of Foundry Engineering 20 (4), 101-107 (2020). DOI: https://doi.org/10.24425/afe.2020.133355
  • [8] D. Závodská et al., The effect of iron content on fatigue lifetime of AlZn10Si8Mg cast alloy. International Journal of Fatigue 128, (2019). DOI: https://doi.org/10.1016/j.ijfatigue.2019.105189.
  • [9] D. Bolibruchová, L. Richtárech, Lukáš, Elimination of Iron Based Particles in Al-Si Alloy. Archives of Foundry Engineering 15 (1), 9-12 (2015). DOI: https://doi.org/10.1515/afe-2015-0002
  • [10] L. Kuchariková, et al., The Effect of the β-Al5FeSi Phases on Microstructure, Mechanical and Fatigue Properties in A356.0 Cast Alloys with Higher Fe Content without Additional Alloying of Mn. Materials 14 (8), 1943 (2021). DOI: https://doi.org/10.3390/ma14081943
  • [11] L. Kuchariková, et al., Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals 8 (8), 581 (2018). DOI: https://doi.org/10.3390/met8080581
  • [12] R. Arrabal, et al., Microstructure and corrosion behaviour of A356 aluminium alloy modified with Nd. Materials and Corrosion 66, 535-541 (2015). DOI: https://doi.org/10.1002/maco.201407674
  • [13] P. Biswas, et al., Effect of Mn Addition on the Mechanical Properties of Al-12.6Si Alloy: Role of Al15(MnFe)3Si2 Intermetallic and Microstructure Modification. Metals and Materials International 27, 1-15. (2019). DOI: https://doi.org/10.1007/s12540-019-00535-5
  • [14] R. Podprocká, D. Bolibruchová, The role of Manganese in the Alloy Based on Al-Si-Mg with Higher Iron Content. Manufacturing Technology 18, 650-654 (2018). DOI: https://doi.org/10.21062/ujep/155.2018/a/1213-2489/MT/18/4/650
  • [15] M. Pasternak, M. Brzeziński, Analysis and Evaluation of Effect of Manganese Content on Properties of EN AC 46000 Aluminum Alloy. Journal of Casting & Materials Engineering 3 (1), 14-18 (2019). DOI: https://doi.org/10.7494/jcme.2018.3.1.14
  • [16] M. Mikolajčík, E. Tillová, L. Kuchariková, L. Pastierovičová, M. Chalupová, M. Uhríčik, Z. Šurdová, Effect of Higher Iron Content and Manganese Addition on the Corrosion Resistance of AlSi7Mg0.6 Secondary Alloy. Manufacturing Technology 22, 436-43 (2022). DOI: https://doi.org/10.21062/mft.2022.057
  • [17] J. Esquiel, R. K. Gupta, Simultaneous improvement of mechanical and corrosion properties of aluminium alloys. Light Metals 2016. Chapter 26. 151-156 (2016).
  • [18] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez, Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution. Corrosion Science 73, 342-355 (2013). DOI: https://doi.org/10.1016/j.corsci.2013.04.023
  • [19] M. Tebaldini, C. Petrogalli, G. Donzella, G.M. La Vecchia, Estimation of Fatigue Limit of a A356-T6 Automotive Wheel in Presence of Defects. Procedia Structural Integrity 7, 521-529 (2017). DOI: https://doi.org/10.1016/j.prostr.2017.11.121
  • [20] L. Pastierovičová, L. Kuchariková, E. Tillová, M. Chalupová, M. Bonek, The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy. Applied Engineering Letters 7 (3), 100-107 (2022). DOI: https://doi.org/10.18485/aeletters.2022.7.3.2
  • [21] M. Lorusso, F. Trevisan, F. Calignano, M. Lombardi, D. Manfredi, A357 Alloy by LPBF for Industry Applications. Materials (Basel) 13 (7), 1488 (2020). DOI: https://doi.org/10.3390/ma13071488
  • [22] L. Kuchariková, et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1178 012037.
  • [23] P. Mikołajczak, L. Ratke, Three Dimensional Morphology of β-Al5FeSi Intermetallics in AlSi Alloys. Arch. Foundry Eng. 15, 47-50 (2015). DOI: https://doi.org/10.1515/afe-2015-0010
Uwagi
This work was supported under the project KEGA no. 004ŽU-4/2023, and project to support young researchers at UNIZA, ID of project 12715 - project leader Ing. Lenka Kuchariková
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-939505ee-cef8-49b6-a46a-3ddd8bd828ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.